Accelerating Inexact Successive Quadratic Approximation for Regularized Optimization Through Manifold Identification

LEE Ching-pei

- 2 Preliminaries
- 3 Manifold Identification of ISQA
- 4 Acceleration Through Manifold Identification
- 5 Numerical Results

Consider the following regularized optimization problem:

$$\min_{x} F(x) \coloneqq f(x) + \Psi(x), \tag{REG}$$

- $f : \mathbb{R}^n \to \mathbb{R}$: L-Lipschitz-continuously differentiable (L-smooth)
- $\Psi: \mathbb{R}^n \to \mathbb{R}$: convex, extended-valued, proper, and closed, but might be nonsmooth.
- F is lower-bounded and the solution set Ω of (REG) is non-empty.

Inexact Successive Quadratic Approximation (ISQA)

At the *t*th iteration, with iterate x^t , find an update direction p^t by solving

$$p^{t} \approx \underset{p \in \mathbb{R}^{n}}{\operatorname{argmin}} \quad Q_{H_{t}}^{x^{t}}\left(p; x^{t}\right) \coloneqq \nabla f\left(x^{t}\right)^{\top} d + \frac{1}{2} d^{\top} H_{t} d + \Psi\left(x^{t} + d\right) - \Psi\left(x^{t}\right) \text{ (SUBPROB)}$$

for some symmetric and positive-semidefinite H_t .

- A stepsize α_t along p^t is then decided for updating the iterate
- Many existing algorithms included in this framework: proximal Newton (PN) when $H_t = \nabla^2 f(x^t)$, proximal quasi-Newton (PQN), proximal gradient, and so on
- Subproblem has no closed-form solution when H_t is not diagonal: apply an iterative solver to obtain an approximate solution
- abbreviation: $Q_t(p) \coloneqq Q_{H_t}^{x^t}(p; x^t)$

- For PN and PQN, under suitable conditions, superlinear convergence in the number of times updating x^t can still be obtained
- Similar to the smooth case (i.e. $\Psi \equiv 0$): requires increasing solution accuracy of (SUBPROB)
- Unlike the smooth case: no closed-form or finite-termination solver (direct inverse/matrix factorization/conjugate gradient) exists for (SUBPROB)
- Superlinear convergence only in theory and in outer iterations, but not observed in real running time

Possible Remedy

- If Ψ is partly smooth around a point x*, and the iterates converge to x*, then after identifying the active manifold M ∋ x* such that Ψ |_M is smooth, we can switch to smooth optimization
- Partly smooth: function value is smooth along a manifold but changes drastically along directions leaving the manifold
- An algorithm identifies \mathcal{M} if there is a neighborhood $U \ni x^*$ such that $x^t \in U$ implies $x^{t+1} \in \mathcal{M}$
- Call such an algorithm possesses the manifold identification property
- If (SUBPROB) is always solved exactly, it is known that the active manifold can be identified
- But due to the inexactness in subproblem solution, ISQA in general does not have the manifold identification property

ISQA Cannot Identify Active Manifold in General

Example 1

$$\min_{x \in \mathbb{R}^2} (x_1 - 2.5)^2 + (x_2 - 0.3)^2 + ||x||_1,$$

- $\Psi(\cdot) = \|\cdot\|_1$, the only solution is $x^* = (2, 0)$, and $\|x\|_1$ is smooth relative to $\mathcal{M} = \{x \mid x_2 = 0\}$ around x^* .
- Consider $\{x^t\}$ with $x_1^t = 2 + f(t), x_2^t = f(t)$, for some f(t) > 0 with $f(t) \downarrow 0$, $H_t \equiv I, \alpha_t \equiv 1$, and $p^t = x^{t+1} x^t$.
- The subproblem optimum is $p^{t*}=x^*-x^t$, so $\|x^t-x^*\|=O(f(t))$ and $\|p^t-p^{t*}\|=O(f(t)).$
- f is arbitrary, both the subproblem inexact solution and its corresponding objective converge to the optimum arbitrarily fast, but $x^t \notin \mathcal{M}$ for all t
- Interestingly, our numerical experience in Lee and Wright (2019); Lee et al. (2019); Li et al. (2020) suggests the opposite: ISQA can identify the active manifold in practice
- This discrepancy between theory and practice motivates this work

- Prove that ISQA essentially possesses the manifold identification property either through the subproblem solver or a specific solution accuracy requirement (2nd one skipped in this talk)
- Strong convergence of the iterates under a mild growth condition (skipped in this talk)
- Propose acceleration techniques to achieve superlinear convergence in running time even without local strong convexity
- Numerical result shows that our new algorithm ISQA⁺ greatly improves upon existing PN and PQN methods

Preliminaries

3 Manifold Identification of ISQA

4 Acceleration Through Manifold Identification

5 Numerical Results

• Choice of H_t : bounded and PD

 $\exists M, m > 0$, such that $M \succeq H_t \succeq m, \forall t \ge 0$. (BD+PD)

• Inexact solution: consider

$$Q_t(p^t) - \min_p Q_t(p) \le \epsilon_t, \tag{OBJ}$$

• Step size: given $\gamma \in (0,1)$ find α_t such that

$$F(x^t + \alpha_t p^t) \le F(x^t) + \alpha_t \gamma Q_t(p^t)$$
 (Armijo)

Algorithmic Framework

Algorithm 1: Framework of ISQA

 $\begin{array}{l} \text{input} : x^0, \ \gamma, \beta \in (0,1) \\ \text{for } t = 0, 1, \dots \text{ do} \\ & \alpha_t \leftarrow 1, \ \text{pick} \ \epsilon_t \geq 0 \ \text{and} \ H_t, \ \text{and} \ \text{solve} \ (\text{SUBPROB}) \ \text{for} \ p^t \ \text{satisfying} \ (\text{OBJ}) \\ & \text{while} \ (\text{Armijo}) \ not \ satisfied \ \text{do} \ \alpha_t \leftarrow \beta \alpha_t \\ & x^{t+1} \leftarrow x^t + \alpha_t p^t \end{array}$

Definition 2 (Partly smooth)

A convex function Ψ is partly smooth at x^* relative to a set $\mathcal{M} \ni x^*$ if $\partial \Psi(x^*) \neq \emptyset$ and:

- Around x^* , \mathcal{M} is a \mathcal{C}^2 -manifold and $\Psi|_{\mathcal{M}}$ is \mathcal{C}^2 .
- ② The affine span of $\partial \Psi(x^*)$ is a translate of the normal space to ${\mathcal M}$ at $x^*.$
- $\partial \Psi$ is continuous at x^* relative to \mathcal{M} .

2 Preliminaries

Manifold Identification of ISQA

4 Acceleration Through Manifold Identification

5 Numerical Results

• Consider relative accuracy in (OBJ) for easier analysis:

$$\exists \eta \in [0,1): \quad \epsilon_t = \eta \left(Q_t(0) - \min_p Q_t(p) \right) = -\eta \min_p Q_t(p), \quad \forall t.$$
 (Relative)

- Easily satisfied by applying a linear-convergent solver to (SUBPROB) for a fixed number of iterations
- Define the proximal mapping: for any function $g,\,\tau\geq 0,$ and Λ PD,

$$\operatorname{prox}_{\tau g}^{\Lambda}(x) \coloneqq \operatorname{argmin}_{y} \frac{1}{2} \langle x - y, \Lambda(x - y) \rangle + \tau g(y)$$

• p^{t*} denotes the optimal solution to (SUBPROB) and $Q_t^* \coloneqq Q_t(p^{t*})$

Identification from Subproblem Solver II

Theorem 3

Consider a point x^* satisfying

$$0 \in \operatorname{relint} \left(\partial F(x^*)\right) = \nabla f(x^*) + \operatorname{relint} \left(\partial \Psi(x^*)\right), \quad (\mathsf{Nondegenerate})$$

with Ψ partly smooth at x^* relative to some manifold \mathcal{M} . Assume f is locally L-smooth for L > 0 around x^* . If Algorithm 1 is run with (OBJ) and (Relative) for some $\eta \in [0, 1)$, and the update direction p^t satisfies

$$x^{t} + p^{t} = \operatorname{prox}_{\Psi}^{\Lambda_{t}} \left(y^{t} - \Lambda_{t}^{-1} \left(\nabla f \left(x^{t} \right) + H_{t} \left(y^{t} - x^{t} \right) + s^{t} \right) \right),$$
 (Prox)

where s^t satisfies $||s^t|| \le R(||y^t - (x^t + p^{t*})||)$ for some continuous and increasing R with R(0) = 0, Λ_t is symmetric and PD, with $M_1 \ge ||\Lambda_t||$ for $M_1 > 0$, and y^t satisfies

$$\left\| \left(y^t - x^t \right) - p^{t*} \right\| \le \eta_1 \left(Q_t(0) - Q_t^* \right)^{\nu}$$

for some $\nu > 0$ and $\eta_1 \ge 0$, then there exists $\epsilon, \delta > 0$ such that $||x^t - x^*|| \le \epsilon, |Q_t^*| \le \delta$, and $\alpha_t = 1$ imply $x^{t+1} \in \mathcal{M}$.

- Proximal Gradient (PG)
- Accelerated PG
- Prox-SAGA/SVRG
- Proximal (Cyclic) Coordinate Descent (CD)
- Almost all solvers used in practice satisfy (Prox), so ISQA essentially possesses the manifold identification property

- 1 Overview and Motivation
- 2 Preliminaries
- 3 Manifold Identification of ISQA
- 4 Acceleration Through Manifold Identification
- 5 Numerical Results

The proposed algorithm ISQA+:

- ISQA stage:
 - Solve (SUBPROB)
 - 2 If (Armijo) fails then modify H_t and resolve
 - **③** If x^t stays within the same manifold for T iterations: switch to the smooth stage
- Smooth stage:
 - **(1)** One iteration of Newton or quasi-Newton within the current manifold
 - One iteration of PG
 - If the manifold changes after PG or the smooth step fails to decrease the objective, go back to the ISQA stage

Superlinear Convergence of ISQA⁺ Without Strong Convexity

- Use $\phi_t : \mathbb{R}^m \to \mathcal{M}_{x^t} \in \mathbb{R}^n$ with $\phi_t(y^t) = x^t$ to parameterize the current manifold, then $F_{\phi_t} := F(\phi_t(\cdot))$ is smooth
- Apply a damping term to the Hessian: find q^t the update direction for y^t such that

$$H_t q^t \approx -g^t, \ g^t \coloneqq \nabla F(\phi_t(y^t)), \ H_t = \nabla^2 F\left(\phi_t(y^t)\right) + \mu_t I, \ \mu_t \coloneqq c \left\|g^t\right\|^{\rho} \quad \text{(Newton)}$$

satisfying

$$||H_t q^t + g^t|| \le 0.1 \min \left\{ ||g^t||, ||g^t||^{1+\rho} \right\}$$
 (Tolerance)

with pre-specified c > 0 and $\rho \in (0, 1]$.

- Apply (preconditioned) conjugate gradient to solve the problem
- Backtracking along q^t for F_{ϕ_t}

Superlinear Convergence

Theorem 4

Consider a critical point x^* of (REG) satisfying (Nondegenerate) at which Ψ is partly smooth relative to \mathcal{M} with a parameterization ϕ and y^* such that $\phi(y^*) = x^*$. Assume $\nabla^2 F_{\phi}$ is PSD and Lipschitz continuous within a neighborhood U of y^* , Ψ is convex, proper, closed, f is L-smooth. Then there is a neighborhood V of x^* such that if at the t_0 th iteration of ISQA⁺ for some $t_0 > 0$ $x^{t_0} \in V$, we have entered the smooth stage, \mathcal{M} is correctly identified, and $\alpha_t = 1$ is taken in the Newton steps for all $t \geq t_0$, we get the following for all $t \geq t_0$.

• For $\rho \in (0,1]$ in (Newton) and (Tolerance) and F_{ϕ} satisfying $\zeta^{\hat{\theta}} \|y - y^*\| \leq (F_{\phi}(y) - F(y^*))^{\hat{\theta}}, \quad \forall y \in U$, with $\hat{\theta} = 1/2$ for some $\zeta > 0$:

$$|x^{t+2} - x^*|| = O\left(||x^t - x^*||^{1+\rho}\right), ||\nabla F_{\phi}(x^{t+2})|| = O\left(||\nabla F_{\phi}(x^t)||^{1+\rho}\right).$$

2 For $\rho = 0.69$ and F_{ϕ} satisfying the same sharpness condition for some $\zeta > 0$ and $\hat{\theta} \ge 3/8$,

$$|x^{t+2} - x^*|| = o(||x^t - x^*||).$$

14

- 2 Preliminaries
- 3 Manifold Identification of ISQA
 - 4 Acceleration Through Manifold Identification

5 Numerical Results

Experiment Setting

• ℓ_1 -regularized logistic regression: domain \mathbb{R}^d ,

$$\Psi(x) = \lambda ||x||_1, \ f(x) = \sum_{i=1}^n \log (1 + \exp(-b_i \langle a_i, x \rangle)),$$

 $(\lambda = 1 \text{ in the experiments})$

- Algorithms to compare:
 - LHAC (Scheinberg and Tang, 2016): an inexact proximal L-BFGS method with CD for (SUBPROB) and a trust-region-like approach.
 - NewGLMNET (Yuan et al., 2012): a line-search PN with a CD subproblem solver.
 - ISQA⁺-LBFGS and ISQA⁺-Newton: our algorithm with the first stage using L-BFGS and real Hessian for H_t , respectively

15

Results

- No clear winner among PN and PQN: depending on data
- But our acceleration improves individual performance no matter which one is better
- Although PN and PQN have superlinear convergence in terms of outer iterations, not observed in running time
- Superlinear convergence in running time clearly observed in our accelerated algorithms

Paper available at: Ching-pei Lee. Accelerating inexact successive quadratic approximation for regularized optimization through manifold identification, 2020. arXiv:2012.02522

Implementation for the experiment at: https://github.com/leepei/ISQA_plus

- Ching-pei Lee. Accelerating inexact successive quadratic approximation for regularized optimization through manifold identification, 2020. arXiv:2012.02522.
- Ching-pei Lee and Stephen J. Wright. Inexact successive quadratic approximation for regularized optimization. *Computational Optimization and Applications*, 2019.
- Ching-pei Lee, Cong Han Lim, and Stephen J. Wright. A distributed quasi-Newton algorithm for primal and dual regularized empirical risk minimization, 2019. arXiv:1912.06508.
- Yu-Sheng Li, Wei-Lin Chiang, and Ching-pei Lee. Manifold identification for ultimately communication-efficient distributed optimization. In *Proceedings of the International Conference on Machine Learning*, 2020.
- Katya Scheinberg and Xiaocheng Tang. Practical inexact proximal quasi-Newton method with global complexity analysis. *Mathematical Programming*, 160(1-2):495–529, 2016.

Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. An improved GLMNET for L1-regularized logistic regression. Journal of Machine Learning Research, 13: 1999–2030, 2012.

19