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Regularized Optimization Problem

Consider the following regularized optimization problem:

min
x

F (x) := f(x) + Ψ(x), (REG)

f : Rn → R: L-Lipschitz-continuously differentiable (L-smooth)

Ψ : Rn → R: convex, extended-valued, proper, and closed, but might be nonsmooth.

F is lower-bounded and the solution set Ω of (REG) is non-empty.
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Inexact Successive Quadratic Approximation (ISQA)

At the tth iteration, with iterate xt, find an update direction pt by solving

pt ≈ argmin
p∈Rn

Qxt

Ht

(
p;xt

)
:= ∇f

(
xt
)>
d+

1

2
d>Htd+Ψ

(
xt + d

)
−Ψ

(
xt
)

(SUBPROB)

for some symmetric and positive-semidefinite Ht.

A stepsize αt along pt is then decided for updating the iterate

Many existing algorithms included in this framework: proximal Newton (PN) when
Ht = ∇2f(xt), proximal quasi-Newton (PQN), proximal gradient, and so on

Subproblem has no closed-form solution when Ht is not diagonal: apply an iterative
solver to obtain an approximate solution

abbreviation: Qt(p) := Qxt

Ht
(p;xt)
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Solution Inexactness

For PN and PQN, under suitable conditions, superlinear convergence in the number of
times updating xt can still be obtained

Similar to the smooth case (i.e. Ψ ≡ 0): requires increasing solution accuracy of
(SUBPROB)

Unlike the smooth case: no closed-form or finite-termination solver (direct
inverse/matrix factorization/conjugate gradient) exists for (SUBPROB)

Superlinear convergence only in theory and in outer iterations, but not observed in real
running time
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Possible Remedy

If Ψ is partly smooth around a point x∗, and the iterates converge to x∗, then after
identifying the active manifold M3 x∗ such that Ψ |M is smooth, we can switch to
smooth optimization

Partly smooth: function value is smooth along a manifold but changes drastically
along directions leaving the manifold

An algorithm identifies M if there is a neighborhood U 3 x∗ such that xt ∈ U implies
xt+1 ∈M

Call such an algorithm possesses the manifold identification property

If (SUBPROB) is always solved exactly, it is known that the active manifold can be
identified

But due to the inexactness in subproblem solution, ISQA in general does not have the
manifold identification property
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ISQA Cannot Identify Active Manifold in General

Example 1

min
x∈R2

(x1 − 2.5)2 + (x2 − 0.3)2 + ‖x‖1,

Ψ(·) = ‖ · ‖1, the only solution is x∗ = (2, 0), and ‖x‖1 is smooth relative to
M = {x | x2 = 0} around x∗.

Consider {xt} with xt1 = 2 + f(t), xt2 = f(t), for some f(t) > 0 with f(t) ↓ 0,
Ht ≡ I, αt ≡ 1, and pt = xt+1 − xt.

The subproblem optimum is pt∗ = x∗ − xt, so ‖xt − x∗‖ = O(f(t)) and
‖pt − pt∗‖ = O(f(t)).

f is arbitrary, both the subproblem inexact solution and its corresponding objective
converge to the optimum arbitrarily fast, but xt /∈M for all t

Interestingly, our numerical experience in Lee and Wright (2019); Lee et al. (2019); Li
et al. (2020) suggests the opposite: ISQA can identify the active manifold in practice

This discrepancy between theory and practice motivates this work
5



Our Contributions

Prove that ISQA essentially possesses the manifold identification property either
through the subproblem solver or a specific solution accuracy requirement (2nd one
skipped in this talk)

Strong convergence of the iterates under a mild growth condition (skipped in this talk)

Propose acceleration techniques to achieve superlinear convergence in running time
even without local strong convexity

Numerical result shows that our new algorithm ISQA+ greatly improves upon existing
PN and PQN methods
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Algorithm Details

Choice of Ht: bounded and PD

∃M,m > 0, such that M � Ht � m, ∀t ≥ 0. (BD+PD)

Inexact solution: consider

Qt(p
t)−min

p
Qt(p) ≤ εt, (OBJ)

Step size: given γ ∈ (0, 1) find αt such that

F (xt + αtp
t) ≤ F (xt) + αtγQt(p

t) (Armijo)
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Algorithmic Framework

Algorithm 1: Framework of ISQA

input : x0, γ, β ∈ (0, 1)
for t = 0, 1, . . . do

αt ← 1, pick εt ≥ 0 and Ht, and solve (SUBPROB) for pt satisfying (OBJ)
while (Armijo) not satisfied do αt ← βαt
xt+1 ← xt + αtp

t

Definition 2 (Partly smooth)

A convex function Ψ is partly smooth at x∗ relative to a setM3 x∗ if ∂Ψ(x∗) 6= ∅ and:

1 Around x∗, M is a C2-manifold and Ψ|M is C2.

2 The affine span of ∂Ψ(x∗) is a translate of the normal space to M at x∗.

3 ∂Ψ is continuous at x∗ relative to M.
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Identification from Subproblem Solver I

Consider relative accuracy in (OBJ) for easier analysis:

∃η ∈ [0, 1) : εt = η

(
Qt(0)−min

p
Qt(p)

)
= −ηmin

p
Qt(p), ∀t. (Relative)

Easily satisfied by applying a linear-convergent solver to (SUBPROB) for a fixed
number of iterations

Define the proximal mapping: for any function g, τ ≥ 0, and Λ PD,

proxΛ
τg(x) := argmin

y

1

2
〈x− y, Λ(x− y)〉+ τg (y)

pt∗ denotes the optimal solution to (SUBPROB) and Q∗t := Qt(p
t∗)
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Identification from Subproblem Solver II

Theorem 3
Consider a point x∗ satisfying

0 ∈ relint (∂F (x∗)) = ∇f(x∗) + relint (∂Ψ(x∗)) , (Nondegenerate)

with Ψ partly smooth at x∗ relative to some manifold M. Assume f is locally L-smooth
for L > 0 around x∗. If Algorithm 1 is run with (OBJ) and (Relative) for some
η ∈ [0, 1), and the update direction pt satisfies

xt + pt = proxΛt
Ψ

(
yt − Λ−1

t

(
∇f

(
xt
)

+Ht

(
yt − xt

)
+ st

))
, (Prox)

where st satisfies ‖st‖ ≤ R (‖yt − (xt + pt∗)‖) for some continuous and increasing R
with R(0) = 0, Λt is symmetric and PD, with M1 ≥ ‖Λt‖ for M1 > 0, and yt satisfies∥∥(yt − xt)− pt∗∥∥ ≤ η1 (Qt(0)−Q∗t )

ν

for some ν > 0 and η1 ≥ 0, then there exists ε, δ > 0 such that ‖xt − x∗‖ ≤ ε, |Q∗t | ≤ δ,
and αt = 1 imply xt+1 ∈M.
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Examples of Solvers Fitting (Prox)

Proximal Gradient (PG)

Accelerated PG

Prox-SAGA/SVRG

Proximal (Cyclic) Coordinate Descent (CD)

Almost all solvers used in practice satisfy (Prox), so ISQA essentially possesses the
manifold identification property
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Algorithm Flow

The proposed algorithm ISQA+:

ISQA stage:
1 Solve (SUBPROB)

2 If (Armijo) fails then modify Ht and resolve

3 If xt stays within the same manifold for T iterations: switch to the smooth stage

Smooth stage:
1 One iteration of Newton or quasi-Newton within the current manifold

2 One iteration of PG

3 If the manifold changes after PG or the smooth step fails to decrease the objective, go
back to the ISQA stage
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Superlinear Convergence of ISQA+ Without Strong Convexity

Use φt : Rm →Mxt ∈ Rn with φt(y
t) = xt to parameterize the current manifold, then

Fφt := F (φt(·)) is smooth

Apply a damping term to the Hessian: find qt the update direction for yt such that

Htq
t ≈ −gt, gt := ∇F (φt(y

t)), Ht = ∇2F
(
φt(y

t)
)

+ µtI, µt := c
∥∥gt∥∥ρ (Newton)

satisfying ∥∥Htq
t + gt

∥∥ ≤ 0.1 min
{∥∥gt∥∥,∥∥gt∥∥1+ρ

}
(Tolerance)

with pre-specified c > 0 and ρ ∈ (0, 1].

Apply (preconditioned) conjugate gradient to solve the problem

Backtracking along qt for Fφt
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Superlinear Convergence

Theorem 4
Consider a critical point x∗ of (REG) satisfying (Nondegenerate) at which Ψ is partly
smooth relative to M with a parameterization φ and y∗ such that φ(y∗) = x∗. Assume
∇2Fφ is PSD and Lipschitz continuous within a neighborhood U of y∗, Ψ is convex,
proper, closed, f is L-smooth. Then there is a neighborhood V of x∗ such that if at the
t0th iteration of ISQA+ for some t0 > 0 xt0 ∈ V , we have entered the smooth stage, M
is correctly identified, and αt = 1 is taken in the Newton steps for all t ≥ t0, we get the
following for all t ≥ t0.

1 For ρ ∈ (0, 1] in (Newton) and (Tolerance) and Fφ satisfying

ζ θ̂‖y − y∗‖ ≤ (Fφ(y)− F (y∗))θ̂ , ∀y ∈ U , with θ̂ = 1/2 for some ζ > 0:∥∥xt+2 − x∗
∥∥ = O

(∥∥xt − x∗∥∥1+ρ
)
,
∥∥∇Fφ (xt+2

)∥∥ = O
(∥∥∇Fφ (xt)∥∥1+ρ

)
.

2 For ρ = 0.69 and Fφ satisfying the same sharpness condition for some ζ > 0 and

θ̂ ≥ 3/8, ∥∥xt+2 − x∗
∥∥ = o

(∥∥xt − x∗∥∥) . 14
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Experiment Setting

`1-regularized logistic regression: domain Rd,

Ψ(x) = λ‖x‖1, f(x) =
n∑
i=1

log (1 + exp (−bi〈ai, x〉)) ,

(λ = 1 in the experiments)

Algorithms to compare:

- LHAC (Scheinberg and Tang, 2016): an inexact proximal L-BFGS method with CD for
(SUBPROB) and a trust-region-like approach.

- NewGLMNET (Yuan et al., 2012): a line-search PN with a CD subproblem solver.

- ISQA+-LBFGS and ISQA+-Newton: our algorithm with the first stage using L-BFGS and
real Hessian for Ht, respectively
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Results
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Experiment Results

No clear winner among PN and PQN: depending on data

But our acceleration improves individual performance no matter which one is better

Although PN and PQN have superlinear convergence in terms of outer iterations, not
observed in running time

Superlinear convergence in running time clearly observed in our accelerated algorithms

Paper available at: Ching-pei Lee. Accelerating inexact successive quadratic
approximation for regularized optimization through manifold identification, 2020.
arXiv:2012.02522

Implementation for the experiment at: https://github.com/leepei/ISQA_plus
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