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Abstract

Support vector data description (SVDD) is a useful method for outlier detection.
Its model is obtained by solving the dual optimization problem. In this paper, we point
out that the existing derivation of the dual problem contains several errors. This issue
causes an incorrect dual problem under some parameters. Given the wide use of SVDD,
it is important to correct these mistakes. We provide a rigorous derivation of the dual
problem, discuss additional properties, and investigate some extensions of SVD.

1 Introduction

Support vector data description (SVDD) by Tax and Duin (2004) is a method to find
the boundary around a data set. SVDD has been successfully applied in a wide variety
of application domains such as handwritten digit recognition (Tax and Duin, 2002), face
recognition (Lee et al., 2006), pattern denoising (Park et al., 2007) and anomaly detection
(Banerjee et al., 2007).

Given a set of training data xi ∈ Rn, i = 1, . . . , l, Tax and Duin (2004) solve the
following optimization problem.

min
R,a,ξ

R2 + C

l∑
i

ξi

subject to ‖φ(xi)− a‖2 ≤ R2 + ξi, i = 1, . . . , l, (1)

ξi ≥ 0, i = 1, . . . , l,

where φ is a function mapping data to a higher dimensional space, and C > 0 is a user-
specified parameter. After (1) is solved, a testing instance x is detected as an outlier if

‖φ(x)− a‖2 > R2.

Because of the large number of variables in a after data mapping, Tax and Duin (2004)
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considered solving the following Lagrange dual problem.

max
α

l∑
i=1

αiQi,i −αTQα

subject to eTα = 1, (2)

0 ≤ αi ≤ C, i = 1, . . . , l,

where e = [1, · · · , 1]T ,α = [α1, · · · , αl]T , and Q is the kernel matrix such that

Qi,j = φ(xi)
Tφ(xj),∀1 ≤ i, j ≤ l.

This problem is very similar to the support vector machine (SVM) dual problem (Boser
et al., 1992; Cortes and Vapnik, 1995), and can be solved by existing optimization methods
for SVM.

In this paper, we point out that the approach of Tax and Duin has the following prob-
lems.

(a) The primal problem (1) has feasible solutions for any C > 0.1 However, the dual
problem (2) is infeasible if C < 1/l. This fact implies that the primal-dual relationship
does not hold.

(b) In fact, problem (1) is not convex, so the commonly used duality theory of convex
programming is not applicable.

(c) In deriving the Lagrange dual problem, they did not check whether (1) satisfies the
constraint qualifications needed in ensuring strong duality (i.e., primal and dual op-
timal values are equal).

The aim of this paper is to fix these problems and derive a valid dual optimization
problem. This paper is organized as follows. In Section 2 we give details of the above-
mentioned problems in Tax and Duin (2004). Section 3 then proposes a correction for these
defectiveness. Section 4 further discusses some extended cases. Section 5 concludes this
work.

2 Problems in the Existing Derivation of SVDD

In this Section, we detailedly discuss each problem in Tax and Duin (2004) that is mentioned
in Section 1.

2.1 Convexity of (1)

For minimizing an optimization problem, before deriving the Lagrange dual problem and
checking whether the dual optimal value is identical to the primal optimal value, one should
make sure that the original problem is convex. Otherwise, the duality theory of convex

1For example, a = 0, R = 0, and ξi = ‖φ(xi)‖2,∀i.
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programming may not be applicable. Here we show that problem (1) is non-convex. The
following function of a, R, ξi

‖φ(xi)− a‖2 −R2 − ξi

is concave with respect to R. Therefore, problem (1) has a non-convex feasible region, so it
is not a convex optimization problem.

2.2 Strong Duality and Constraint Qualification

When deriving the Lagrange dual problem of a convex optimization problem, an important
property that we hope to have is that the dual optimal value is equal to the primal value.
This property, referred to as the strong duality, ensures that we can solve the original
problem (called primal) through the dual problem. The following theorem is commonly
used to check if the strong duality holds.

Theorem 1 (Boyd and Vandenberghe 2004, Section 5.2.3). Consider the following primal
problem

min
w

f0(w)

subject to fi(w) ≤ 0, i = 1, . . . ,m, (3)

hi(w) = 0, i = 1, . . . , p,

where f0, f1, . . . , fm are convex, and h1, . . . , hp are affine.

If this problem either has linear constraints or satisfies some constraint qualifications
such as Slater’s condition, and the Lagrange dual problem is defined as

max
α≥0,ν

g(α,ν)

where

g(α,ν) = inf
w

(
f0 (w) +

m∑
i=1

αifi (w) +

p∑
i=1

νihi (w)

)
,

and α = [α1, . . . , αm],ν = [ν1, . . . , νp], then strong duality holds.

In spite of the non-convexity of (1), Tax and Duin (2004) did not check any constraint
qualification. Thus they are not in a position to apply the above theorem.

An interesting difference is that it is not necessary to check constraint qualification for
SVM. The constraints in (1) are nonlinear, while SVM involves only linear constraints.

2.3 Issues in Deriving the Lagrange Dual Problem

The Lagrangian of (1) is

L(a, R, ξ,α,γ) = R2 + C

l∑
i=1

ξi −
l∑

i=1

αi
(
R2 + ξi − ‖φ (xi)− a‖2

)
−

l∑
i=1

γiξi,
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where α and γ are Lagrange multipliers. The Lagrange dual problem is

max
α≥0,γ≥0

(
inf
a,R,ξ

L(a, R, ξ,α,γ)

)
.

To obtain the infimum, Tax and Duin set both the partial derivatives of L with respect to
R and a to be zero.

∂L

∂R
= 0 ⇒ R(1−

l∑
i=1

αi) = 0, (4)

∂L

∂a
= 0 ⇒

l∑
i=1

αiφ(xi)− a
l∑

i=1

αi = 0. (5)

From (4), they then derive
l∑

i=1

αi = 1, (6)

and obtain

a =

l∑
i=1

αiφ(xi)

by combining (5) and (6). They finish deriving the dual problem (2) based on the above
results. However, (6) is incorrect because when R = 0 in (4), (6) does not necessarily hold.
Thus any further derivations based on (6) are wrong. Finally, problem (2) does not have
any feasible solution when 0 < C < 1/l. In contrast, the primal problem (1) is feasible for
any C > 0. Thus strong duality is clearly violated.

3 Convexity and the Dual Problem of SVDD

In this section, we carefully address all issues mentioned in Section 2. To apply Theorem
1, we begin with reformulating (1) to a convex problem. We then check its constraint
qualification before deriving the dual problem rigorously.

3.1 A Convex Equivalent of Problem (1)

As shown before, (1) is not a convex problem. Nevertheless, by defining

R̄ = R2,

(1) is equivalent to the following convex problem.

min
R̄,a,ξ

R̄+ C
l∑

i=1

ξi

subject to ‖φ(xi)− a‖2 ≤ R̄+ ξi, i = 1, . . . , l, (7)

ξi ≥ 0, i = 1, . . . , l,

R̄ ≥ 0.
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A new constraint specifying the non-negativity of R̄ is added. Notice that

‖φ(xi)− a‖2 − R̄− ξi = φ(xi)
Tφ(xi)− 2φ(xi)

Ta+ aTa− R̄− ξi (8)

is linear to both R̄ and ξi, and is convex with respect to a. Therefore, (7) is in a form
needed by Theorem 1.

The objective function of (7) is convex rather than strictly convex. Thus, (7) may
possess multiple optimal solutions with the same optimal function value. However, the
optimal a is unique because (8) is strictly convex to a.

3.2 Constraint Qualification

To apply Theorem 1 on problem (7), we must check if (7) satisfies certain constraint qual-
ification. Many types of constraint qualification have been developed in the field of convex
optimization. Here we consider Slater’s condition.

Theorem 2 (Slater’s condition, Boyd and Vandenberghe 2004, Section 5.2.3). For any
function fi and any set S, define

dom(fi) ≡ The domain of fi,

and
relint(S) ≡ {w ∈ S | ∃r > 0, Br(w) ∩ aff(S) ⊂ S},

where Br(w) is a ball centered at w with radius r and aff(S) is the affine hull of S. Consider
problem (3), if there exists w such that

w ∈ relint (∩mi=0dom (fi)) ,

fi(w) < 0, i = 1, . . . ,m,

hi(w) = 0, i = 1, . . . , p,

then strong duality for (3) holds.

For any data xi, i = 1, . . . , l, we can let a = 0, then find R̄ > 0 and ξ > 0 large enough
such that

‖φ(xi)− a‖2 − R̄− ξi < 0, i = 1, . . . , l.

Therefore, Slater’s condition is satisfied and thus strong duality for (7) holds.

3.3 The Dual Problem of (7)

Recall that a difficulty of deriving (6) from (4) is that R may be zero. Now R2 is replaced
by R̄, but a related difficulty is whether the non-negativity constraint R̄ ≥ 0 is active. We
handle this difficulty by splitting the derivation to two cases as described in the following
theorem.

Theorem 3. Consider problem (7).

(a) For any C > 1/l, the constraint R̄ ≥ 0 in (7) is not necessary. That is, without this
constraint, any optimal solution still satisfies R̄ ≥ 0.
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(b) For any C < 1/l, R̄ = 0 is uniquely optimal. If C = 1/l, then at least one optimal
solution has R̄ = 0.

The proof is in Appendix A. With Theorem 3, we derive the dual problem by considering
C > 1/l and C ≤ 1/l separately.

Case 1: C > 1/l.
The Lagrangian of (7) is

L(a, R̄, ξ,α,γ) = R̄+ C

l∑
i=1

ξi −
l∑

i=1

αi
(
R̄+ ξi − ‖φ(xi)− a‖2

)
−

l∑
i=1

γiξi (9)

= R̄

(
1−

l∑
i=1

αi

)
+

l∑
i=1

ξi (C − αi − γi) +
l∑

i=1

αi
(
‖φ(xi)− a‖2

)
,

where α and γ are Lagrange multipliers. The Lagrange dual problem is

max
α≥0,γ≥0

(
inf
a,R̄,ξ

L(a, R̄, ξ,α,γ)

)
. (10)

Clearly, if (α,γ) satisfies

1− eTα 6= 0,

or

C − αi − γi 6= 0 for some i,

then

inf
a,R̄,ξ

L(a, R̄, ξ,α,γ) = −∞.

Such (α,γ) should not be considered because of the maximization over α and γ in (10).
This leads to the following constraints in the dual problem.

1− eTα = 0, (11)

C − αi − γi = 0, i = 1, . . . , l. (12)

Substituting (11) and (12) into (10), and taking γi ≥ 0,∀i into account, the dual problem
(10) is reduced to

max
α

(
inf
a

l∑
i=1

αi
(
‖φ(xi)− a‖2

))
subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (13)

eTα = 1.

Because
l∑

i=1

αi‖φ(xi)− a‖2
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is strictly convex with respect to an unbounded variable a, the infimum occurs at the point
that the derivative is zero.

a
l∑

i=1

αi =
l∑

i=1

αiφ(xi). (14)

By the constraint (11), (14) is equivalent to

a =

∑l
i=1 αiφ(xi)

eTα
=

l∑
i=1

αiφ(xi). (15)

We then obtain the following dual problem for C > 1/l.

max
α

l∑
i=1

αiQi,i −αTQα

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (16)

eTα = 1,

which is the same as (2).
Note that if we do not apply Theorem 3 to remove the constraint R̄ ≥ 0, the Lagrangian

has an additional term −βR̄, where β is the corresponding Lagrange multiplier. Then the
constraint (11) becomes

1− eTα− β = 0 and β ≥ 0.

The situation becomes complicated because we must check if eTα > 0 or not before dividing
eTα from both sides of (14). In Section 4.1, we will see an example that must check the
situation of eTα = 0.

We discuss how to obtain the primal optimal solution after solving the dual problem.
Clearly, the optimal a can be obtained by (15). Tax and Duin (2004) find R̄ by identifying
an optimal αi with 0 < αi < C. From the KKT optimality condition, primal and dual
optimal solutions satisfy the following slackness conditions.

γiξi = 0 and αi
(
‖φ(xi)− a‖2 − R̄− ξi

)
= 0, i = 1, . . . , l. (17)

With (12), an index i with 0 < αi < C satisfies

ξi = 0 and R̄ = ‖φ(xi)− a‖2. (18)

However, it is possible that all αi values are bounded, so their method is not always appli-
cable. We show that the optimal R̄ can be obtained by the following theorem.

Theorem 4. Any optimal (R̄,a) of (7) and optimal α of (16) satisfy

max
i:αi<C

‖φ(xi)− a‖2 ≤ R̄ ≤ min
i:αi>0

‖φ(xi)− a‖2. (19)

The proof is in Appendix B. If there exists an index i with 0 < αi < C, (19) is reduced to
(18) and the optimal R̄ is unique. Otherwise, if every αi is bounded (i.e., 0 or C), then (19)
indicates that any R̄ in an interval is optimal. Interestingly, (19) is similar to the inequality
for the bias term b in SVM problems; see, for example, Fan et al. (2005). For the practical
implementation we may adopt the following setting in LIBSVM (Chang and Lin, 2011) to
calculate R̄.
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(a) If some indices satisfy 0 < αi < C, then we calculate the average of ‖φ(xi)−a‖2 over
all such i. The reason is that each single ‖φ(xi)− a‖2 may be inaccurate because of
numerical errors.

(b) If all αi are bounded, then we choose R̄ to be the middle point of the interval in (19).

Finally, the optimal ξ can be computed by

ξi = max
(
‖φ(xi)− a‖2 − R̄, 0

)
, i = 1, . . . , l. (20)

Another interesting property is that when C is large, all models of SVDD are the same.
We state this result in the following theorem.

Theorem 5. For any C > 1, problem (7) is equivalent to following problem.

min
R̄,a

R̄

subject to ‖φ(xi)− a‖2 ≤ R̄. (21)

The proof is in Appendix C. The relation between (7) and (21) is similar to that between soft-
margin and hard-margin SVM, where the latter uses neither C nor ξ because of assuming
that data are separable. For SVM, it is know that if data are separable, there is a C̄ such
that for all C > C̄, the solution is the same as without having the loss term; see, for
example, Lin (2001). This C̄ is problem dependent, but for SVDD, we have shown that C̄
is one.

Case 2: C ≤ 1/l.
By Theorem 3, we can remove the variable R̄ from problem (7). The minimum must occur
when

ξi = ‖φ(xi)− a‖2 ≥ 0.

Thus, problem (7) can be reduced to

min
a

l∑
i=1

‖φ(xi)− a‖2. (22)

This problem is strictly convex to a, so setting the gradient to be zero leads to

a =

∑l
i=1 φ(xi)

l
. (23)

Therefore, when C ≤ 1/l, the optimal solution is independent of C. Further, the optimiza-
tion problem has a closed-form solution in (23).

3.4 Implementation Issues

The dual problem (16) is very similar to the SVM dual problem. They both have a quadratic
objective function, one linear constraint, and l bounded constraints. Therefore, existing
optimization methods such as decomposition methods (e.g., Platt 1998; Joachims 1998;
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Fan et al. 2005) can be easily applied. We also note that (16) is related to the dual problem
of one-class SVM (Schölkopf et al., 2001), which is another method for outlier detection.

In the prediction stage, for any test instance x, we must check the value

‖φ(x)− a‖2 − R̄.

If it is positive, then x is considered as an outlier. If a kernel is used and C > 1/l, then
from (15), the calculation is conducted by

‖φ(x)− a‖2 − R̄ = K(x,x)− 2
∑
i:αi>0

αiK(x,xi) +αTQα− R̄,

where K(·, ·) is the kernel function. The αTQα−R̄ term is expensive to calculate, although
it is independent from test instances. A trick is to store this constant after solving the dual
problem. Note that we can rewrite (19) in a way related to αTQα− R̄.

max
i:αi<C

(Qi,i − 2(Qα)i) ≤ R̄−αTQα ≤ min
i:αi>0

(Qi,i − 2(Qα)i).

Then R̄ − αTQα is the Lagrange multiplier of the dual problem (16) with respect to the
equality constraint eTα = 1. In our implementation based on LIBSVM, its solver handily
provides this multiplier after solving the dual problem.

4 Extensions

In this section, we discuss some extensions of SVDD.

4.1 L2-Loss SVDD

One alternative of SVDD is to adopt L2 loss in the objective function. We will show that
L2-loss SVDD has several differences from the L1-loss one.

The optimization problem of L2-loss SVDD is

min
R̄,a,ξ

R̄+ C
l∑

i=1

ξ2
i

subject to ‖φ(xi)− a‖2 ≤ R̄+ ξi, i = 1, . . . , l, (24)

R̄ ≥ 0.

Note that the constraint ξi ≥ 0,∀i appeared in (7) is not necessary for L2-loss SVDD,
because if at an optimum, ξi < 0 for some i, we can then replace ξi with 0 so that

‖φ(xi)− a‖2 ≤ R̄+ ξi < R̄+ 0.

The constraints are still satisfied, but the objective value is smaller. This contradicts the
assumption that ξi is optimal.

Similar to the L1-loss case, because of using R̄ rather than R2, (24) is a convex opti-
mization problem. Furthermore, Slater’s condition holds, and so does the strong duality.
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To derive the dual problem, the Lagrangian of (24) is

L(a, R̄, ξ,α, β) = R̄+ C

l∑
i=1

ξ2
i −

l∑
i=1

αi
(
R̄+ ξi − ‖φ (xi)− a‖2

)
− βR̄, (25)

where α and β are Lagrange multipliers. The Lagrange dual problem is

max
α≥0,β≥0

(
inf
a,R̄,ξ

L
(
a, R̄, ξ,α, β

))
. (26)

Clearly, if
1− eTα− β 6= 0,

then
inf
a,R̄,ξ

L(a, R̄, ξ,α, β) = −∞.

Thus we have the following constraint in the dual problem.

1− eTα− β = 0. (27)

In addition, L is strictly convex to ξi,∀i, so we have

∂L

∂ξi
= 0 ⇒ ξi =

αi
2C

, i = 1, . . . , l. (28)

Substituting (27) and (28) into (26), the dual problem of (24) is

max
α

(
inf
a

l∑
i=1

αi‖φ(xi)− a‖2 −
l∑

i=1

α2
i

4C

)
subject to 0 ≤ αi ≤ ∞, i = 1, . . . , l, (29)

eTα ≤ 1.

Similar to the derivation from (13) to (14), the infimum occurs when

a

l∑
i=1

αi =

l∑
i=1

αiφ(xi). (30)

However, because we now have (27) rather than (6), we cannot divide
∑l

i=1 αi from both

sides of (30) as in (15). Instead, we must check if
∑l

i=1 αi = 0 can happen or not.

When
∑l

i=1 αi = 0, by the constraints of (29), we have αi = 0, ∀i. If it is an optimal
solution of (29), then the objective value is zero, and by the strong duality, so is the primal
optimal value. Because both R̄ and ξ2

i are non-negative, this situation is possible only when

R̄ = 0, ξ = 0,

which indicates
φ(x1) = φ(x2) = · · · = φ(xl). (31)
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We can rule out this situation before solving (24).
If (31) does not occur, (29) is equivalent to the problem of adding the constraint∑l
i=1 αi 6= 0. Then from (30),

a =

∑l
i=1 αiφ(xi)

eTα
. (32)

Finally, the dual problem is

max
α

l∑
i=1

αiQi,i −
αTQα

eTα
−

l∑
i=1

α2
i

4C

subject to 0 ≤ αi ≤ ∞, i = 1, . . . , l, (33)

eTα ≤ 1.

Because the loss term C
∑l

i=1 ξ
2
i is now strictly convex, we are able to prove the uniqueness

of the optimum.

Theorem 6. The optimal solutions of (24) and (33) are both unique.

The proof is in Appendix D. We can then further simplify (33) by the following theorem.

Theorem 7. There exists C∗ ≥ 0 such that

(a) If C > C∗, the optimal α and R̄ satisfy eTα = 1 and R̄ > 0.

(b) If C ≤ C∗, the optimal R̄ = 0.

The proof is in Appendix E. Clearly, C∗ plays the same role as 1/l in Theorem 3 for L1-
loss SVDD. The main difference, which will be discussed in detail, is that C∗ is problem
dependent.

Following Theorem 7, we discuss the two situations C > C∗ and C ≤ C∗ in detail. First,
when C > C∗, (29) is equivalent to

max
α

l∑
i=1

αiQi,i −αTQα−
l∑

i=1

α2
i

4C

subject to 0 ≤ αi ≤ ∞, i = 1, . . . , l, (34)

eTα = 1,

which is very similar to (16). Some minor differences are that (34) has an additional∑l
i=1(α2

i /4C) term and α is unbounded.
For the situation that C ≤ C∗, by the same explanation to derive (22), (24) can be

reduced to

min
a,ξ

C
l∑

i=1

ξ2
i

subject to ‖φ(xi)− a‖2 ≤ ξi, i = 1, . . . , l. (35)

Note that C in (35) is not needed. Therefore, similar to Case 2 of L1 loss, problem (35) is
independent of C. However, while (22) has a simple analytic solution, (35) does not. If we
consider the dual problem, then the following result can be proved.
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Theorem 8. For any C ≤ C∗, the dual optimal solution of (24) is a linear function of C.
That is,

α =
C

C∗ ·α
∗, (36)

where α∗ and α are the optimal solutions for (33) with parameters C∗ and C, respectively.

The proof is in Appendix F. Note that the objective function of (33) can be written as

C

(
l∑

i=1

(
αi
C

)Qi,i −
(αC )TQ(αC )

eT (αC )
− 1

4

l∑
i=1

(
αi
C

)2

)
.

Without considering the coefficient C, from Theorem 8, the optimal value in the parentheses
is a constant. It corresponds to the optimal

∑l
i=1 ξ

2
i value in the primal problem (35).

The remaining task is to compute the value of C∗. Unfortunately, it is problem depen-
dent. We show this result by considering the following two examples. The first problem
consists of two instances x1 = 1 and x2 = −1. Clearly, the optimal a for any C is a = 0.
From (20), the primal problem is then equivalent to

min
R̄≥0

R̄+ 2C(1− R̄)2.

The optimal R̄ is

R̄ =

{
4C−1

4C , if 4C − 1 ≥ 0,

0, otherwise.

Thus C∗ = 1/4. For the other example, we consider x1 = 0.1 and x2 = −0.1. By the same
derivation, C∗ = 5/2.

The problem-dependent C∗ makes (24) more difficult to solve. In contrast, C∗ = 1/l is
a constant for L1-loss SVDD. Thus L2-loss SVDD is not recommended.

4.2 Smallest Circle Encompassing the Data

The radius of the smallest circle encompassing all training instances is useful for evaluating
an upper bound of leave-one-out error for SVMs (Vapnik and Chapelle, 2000; Chung et al.,
2003). It can be computed by a simplified form of (7) without considering ξ.

min
R̄,a

R̄

subject to ‖φ(xi)− a‖2 ≤ R̄.

Note that this is identical to (21). Past works have derived the dual problem of (21). As
expected, it is (16) without the constraint αi ≤ C,∀i. A practical issue is that for applying
an optimization procedure for (16) to solve the dual problem here, replacing C with∞ may
cause numerical issues. We address this issue by applying Theorem 5. That is, to solve
(21), all we have to do is to solve (7) with any C > 1.
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5 Conclusions

In this paper, we pointed out several problems in the existing derivation of SVDD. We
make thorough corrections by rigorously following the theory of convex optimization. The
extension of using L2-loss is also studied, but we conclude that it is more complicated to
use than the standard L1-loss SVDD. Based on this work, we have released an extension of
LIBSVM for SVDD at LIBSVM Tools.2

A Proof of Theorem 3

For any C > 1/l, assume (R̄,a, ξ) is an optimum with R̄ < 0. We consider a new point
(0,a, ξ + R̄e), where e is the vector of all ones. This point is feasible because

0 ≤ ‖φ(xi)− a‖2 ≤ R̄+ ξi = 0 + (ξi + R̄)

and therefore
ξi + R̄ ≥ 0.

Because C > 1/l and R̄ < 0, the new objective function satisfies

0 + C
l∑

i=1

(ξi + R̄) = C
l∑

i=1

ξi + lCR̄ < C
l∑

i=1

ξi + R̄,

a contradiction to the assumption that (R̄,a, ξ) is optimal.
For any C ≤ 1/l, assume (R̄,a, ξ) is an optimum with R̄ > 0. We consider a new point

(0,a, ξ + R̄e), where e is the vector of all ones. This point is feasible because

0 ≤ ‖φ(xi)− a‖2 ≤ R̄+ ξi = 0 + (ξi + R̄)

and
ξi + R̄ ≥ 0.

Because C ≤ 1/l and R̄ > 0, the new objective function satisfies

0 + C

l∑
i=1

(ξi + R̄) = C

l∑
i=1

ξi + lCR̄ ≤ C
l∑

i=1

ξi + R̄. (37)

Along with the constraint R̄ ≥ 0, R̄ = 0 is optimal when C ≤ 1/l. Furthermore, when
C < 1/l, (37) becomes a strict inequality. This contradicts the assumption that (R̄,a, ξ) is
optimal, so the optimal R̄ must be zero.

B Proof of Theorem 4

From the KKT conditions (17) and (12), at an optimum we have for all i,

R̄ ≥ ‖φ(xi)− a‖2, if αi < C,

R̄ ≤ ‖φ(xi)− a‖2, if αi > 0.

The inequality (19) immediately follows.

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#libsvm_for_svdd_and_finding_the_smallest_

sphere_containing_all_data.
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C Proof of Theorem 5

From (11), (12) and the constraint αi ≥ 0, ∀i, if C > 1, then γi > 0 and the KKT optimality
condition γiξi = 0 in (17) implies that ξi = 0. Therefore, the C

∑l
i=1 ξi term can be removed

from the objective function of (7). The R̄ ≥ 0 constraint is not needed because without ξ,
R̄ ≥ ‖φ(xi) − a‖2 has implicitly guaranteed the non-negativity of R̄. Therefore, if C > 1,
problems (7) and (21) are equivalent.

D Proof of Theorem 6

Similar to L1-loss SVDD, the optimal a is unique because the function of the inequality
constraint is strictly convex to a. Now because of using the strictly convex loss term
C
∑l

i=1 ξ
2
i , the optimal ξ is unique. Then

R̄ = Primal optimal value− C
l∑

i=1

ξ2
i

is unique because a convex programming problem has a unique optimal objective value.
Finally, from the condition (28), the dual optimal α is unique.

E Proof of Theorem 7

First we need the following lemma for the monotonicity of R̄ with respect to the value of
C.

Lemma 1. Consider problem (24). The optimal R̄ is an increasing function with respect
to C.

Proof. For C2 > C1 > 0, assume (R̄C2 ,aC2 , ξC2
) and (R̄C1 ,aC1 , ξC1

) are optimal solutions
of (24) with C = C2 and C = C1, respectively. Thus

R̄C1 + C1

l∑
i=1

(ξC1
)2
i ≤ R̄C2 + C1

l∑
i=1

(ξC2
)2
i ,

R̄C2 + C2

l∑
i=1

(ξC2
)2
i ≤ R̄C1 + C2

l∑
i=1

(ξC1
)2
i .

We then obtain

C1

(
l∑

i=1

(ξC1
)2
i −

l∑
i=1

(ξC2
)2
i

)
≤ R̄C2 − R̄C1 ≤ C2

(
l∑

i=1

(ξC1
)2
i −

l∑
i=1

(ξC2
)2
i

)
, (38)

which implies
l∑

i=1

(ξC1
)2
i −

l∑
i=1

(ξC2
)2
i ≥ 0 (39)
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because C2 > C1. Combining (38) and (39), we then have

R̄C2 ≥ R̄C1

as desired.

Now we can proceed on the main proof. Let

∆ ≡ min
a

l∑
i=1

‖φ(xi)− a‖2 > 0.

Note that we have ruled out the special case ∆ = 0, which occurs only when φ(x1) =
φ(x2) = · · · = φ(xl). Assume (R̄C ,aC , ξC) is the optimal solution of (24) corresponding to
C. Then

l∑
i=1

‖φ(xi)− aC‖2 ≥ ∆ > 0,

and there exists at least one j such that

‖φ(xj)− aC‖2 ≥
∆

l
> 0. (40)

From (40), (28), and the constraints of (24),

R̄C +
(αC)j

2C
= R̄C + (ξC)j ≥ ‖φ(xj)− aC‖2 > 0,∀C > 0. (41)

We claim that if

2C · ∆

l
> 1, (42)

then R̄C > 0. Otherwise, from (41) and (40), R̄C = 0 implies

(αC)j
2C

= (ξC)j ≥ ‖φ(xj)− aC‖2 ≥
∆

l
.

With (42),
(αC)j > 1,

but this violates the constraints of (29). Therefore, R̄C > 0 if (42) holds. From the KKT
optimality condition that

βCR̄C = 0,

we obtain
βC = 0.

Thus from (27),
0 = 1− eTαC − βC = 1− eTαC . (43)

By Lemma 1, (43) and the fact that C > 0, there is an infimum C∗ ≥ 0 such that

R̄C > 0 and eTαC = 1,∀C > C∗.
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If C∗ > 0, we claim that for any C with 0 < C < C∗, R̄C = 0. Otherwise, if for one C̄ < C∗

we have R̄C̄ > 0, then Lemma 1 implies that R̄C > 0, ∀C ≥ C̄, a violation to the definition
of C∗.

The situation at C = C∗ is more complicated. Because R̄C = 0,∀0 < C < C∗, (24) is
reduced to

min
a,ξ

l∑
i=1

ξ2
i

subject to ‖φ(xi)− a‖2 ≤ ξi, i = 1, . . . , l. (44)

We denote the unique optimal solution as (â, ξ̂). Let (R̄∗,a∗, ξ∗) and (0,aC , ξc) be optimal
solutions at C∗ and 0 < C < C∗. Because (44) is independent of C, we have

aC = â, ξC = ξ̂,∀0 < C < C∗.

Then

R̄∗ + C∗
l∑

i=1

(ξ∗i )2 ≤ 0 + C∗
l∑

i=1

ξ̂2
i ,

0 + C
l∑

i=1

ξ̂2
i ≤ R̄∗ + C

l∑
i=1

(ξ∗i )2.

Let C → C∗, we have

C∗
l∑

i=1

ξ̂2
i ≤ R̄∗ + C∗

l∑
i=1

(ξ∗i )2 ≤ C∗
l∑

i=1

ξ̂2
i .

Thus

C∗
l∑

i=1

ξ̂2
i = R̄∗ +

l∑
i=1

(ξ∗i )2.

That is, (0, â, ξ̂) is an optimal solution at C∗. By Theorem 6, the optimal solution of (24)
is unique at any C∗. We thus have R̄∗ = 0.

F Proof of Theorem 8

The KKT condition gives

αi(
αi
2C
− ‖φ(xi)− a‖2) = 0. (45)

From Theorem 7, for any C ≤ C∗, we are solving the following problem.

min
a

l∑
i=1

(‖φ(xi)− a‖2)2.

Therefore, the optimal a is a constant. Thus,

αi
2C

=
α∗
i

2C∗ ,

and the proof is complete.
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