
Supplement Materials for “Large-scale Linear RankSVM”

Ching-Pei Lee and Chih-Jen Lin

Department of Computer Science, National Taiwan University, Taipei 10617, Tai-
wan

I Introduction

This document presents some materials not included in the paper. In Section II,
we illustrate the direct method for computing l+i (w), l−i (w), α+

i (w,v) and α−i (w),
as well as the approach in Joachims (2006) that is similar to this method. Section
III gives a comparison on relative function value, pairwise accuracy and NDCG
with respect to the number of (CG) iterations between TRON and the cutting
plane method used in TreeRankSVM. The results show that despite of their im-
plementation differences, TRON has better convergence than the cutting plane
method. In Section IV we discuss the possibility of solving the dual problem.

II Direct Methods to Calculate l+i (w), l−i (w), α+
i (w,v)

and α−i (w,v)

In this section, we describe the direct method mentioned in Section 2.2 in detail,
and then introduce a variant used in Joachims (2006).

II.1 A Direct Counting Method

To find l+i (w), we must count the cardinality of the following set.

SV+
i (w) = {j | yj > yi,w

Txj < wTxi + 1}.

The main difficulty is that both the order of yi and the order of wTxi are involved.
We can first sort wTxi in ascending order. For easier description, we assume that

wTx1 ≤ · · · ≤ wTxl. (II.1)

We then notice that if

count+(r) ≡ |{j | yj = r,wTxj < wTxi + 1}|, ∀r ∈ K

are available, then

l+i (w) =
∑
r:r>yi

count+(r). (II.2)

From (5), we can easily maintain count+(r) ∀r when moving from i to i+ 1 by

count+(yj)← count+(yj) + 1, if wTxi + 1 ≤ wTxj < wTxi+1 + 1,

because
{j | wTxj < wTxi + 1} ⊂ {j | wTxj < wTxi+1 + 1}.

We illustrate how this method obtains l+i (w) by considering the following example.

i 1 2 3 4 5 6
wTxi −0.9 −0.7 −0.1 0.15 0.2 1.6

yi 2 1 2 3 3 2

For i = 1, we have

↓ ↓
− 0.9 − 0.7 −0.1 0.15 0.2 1.6,

where the first pointer indicates the current i, while the second one indicates the
bound wTxi + 1. Thus, count+ = (1, 2, 0), and l+1 (w) = 0. For i = 2, we have

↓ ↓
− 0.9 − 0.7 −0.1 0.15 0.2 1.6,

and count+ = (1, 2, 2). Thus, l+2 (w) = 2 + 2 = 4.

The calculation for l−i (w) is similar but goes through the whole data from l to 1
and maintains |{j | yj = r,wTxj > wTxi − 1}|, ∀r.

Next, we discuss how to calculate α+
i (w,v) and α−i (w,v). Notice that

l+i (w) =
∑

j∈SV+
i (w)

1, and α+
i (w,v) =

∑
j∈SV+

i (w)

xTi v. (II.3)

Thus, α+
i (w,v) can be calculated by a similar method that maintains the following

value.
xv+(r) ≡

∑
j:yj=r,wTxj<wTxi+1

xTj v, ∀r ∈ K.

If wTxi have been sorted before CG iterations, this approach needs O(l+k) space
and costs

O(ln̄+ lk + n) (II.4)

time for one matrix-vector product. This type of approach has been used by
Joachims (2005) and Chapelle and Keerthi (2010) for the situation of k = 2,
although our discussion is more general for any k. A procedure with similar com-
plexity for general k has been proposed by Joachims (2006). See more discussion
in Section II.2.

Because O(lk) ≤ O(p) = O(l2), the current approach is better than the method
by (12). However, the O(lk) complexity is still high if k is large.

2

j j j

↓ ↓ ↓

|
[

|
)

|

wTxi′ wTxi′ + 1 wTxi wTxi + 1 wTxi′′

Figure (I): An illustration of the counting approach of Joachims (2006)

II.2 Details of the Method in Joachims (2006)

Joachims (2006) considered a direct method that is similar to that in Section II.1
to compute l+i (w) and l−i (w). We assume the data has been sorted as in (II.1).
Each time this method considers a relevance level r and calculates

l+i (w), ∀i with yi = r.

Assume r = r0 and

wTxi′ ≤ wTxi ≤ wTxi′′ with yi′ = yi = yi′′ = r0

are three consecutive elements with relevance level r0. We have the situation in
Figure (I), and

l+i (w)

= |{j | yj > r0, w
Txj < wTxi + 1}|

= |{j | yj > r0, w
Txj < wTxi′ + 1}|+ |{j | yj > r0, w

Txi′ + 1 ≤ wTxj < wTxi + 1}|
= l+i′ (w) + |{j | yj > r0, w

Txi′ + 1 ≤ wTxj < wTxi + 1}|.

Therefore, if l+i′ (w) is known, one only needs to count those indices j satisfying

yj > r0 and wTxi′ + 1 ≤ wTxj < wTxi + 1.

They are elements in the semi-open interval in Figure (I). Joachims (2006) carefully
observes that simultaneously one can also count elements in l−j (w) by the following
formulation.

l−j (w) = |{s | yj > ys, w
Txj < wTxs + 1}|

=
∑
r:r<yj

|{s | ys = r, wTxj < wTxs + 1}|. (II.5)

From Figure (I), because j is in the semi-open interval, the smallest wTxs satis-
fying wTxj < wTxs + 1 and ys = r0 is wTxi. Therefore,

{s | ys = r, wTxj < wTxs + 1} = {s | ys = r, wTxs ≥ wTxi}. (II.6)

If the cardinality of the set (II.6)

|{s | ys = r, wTxs ≥ wTxi}| (II.7)

3

Algorithm (I) The method in Joachims (2006) for calculating l+i (w) and l−i (w)

1. Assume K = {1, . . . , k}. l−i (w)← 0,∀i = 1, . . . l.
2. Given X and w, compute Xw.
3. Sort wTxi in ascending order: wTxπ(1) ≤ · · · ≤ wTxπ(l).
4. For r = 2, . . . , k

4.1. j ← 1, count+ ← 0, count− ← |{s | ys = r}|.
4.2. For i = 1, . . . , l

4.2.1. If yπ(i) = r
a. While j ≤ l and 1−wTxπ(j) + wTxπ(i) > 0
• If yπ(j) > r
– count+ ← count+ + 1.
– l−π(j) ← l−π(j) + count−.
• j ← j + 1.

b. l+i (w)← count+.
c. count− ← count− − 1.

can be maintained, it can be used for calculating l−j (w) in (II.5). To update (II.7),
if i is moved to i′′, clearly

|{s | ys = r0, w
Txs ≥ wTxi′′}| = |{s | ys = r0, w

Txs ≥ wTxi}| − 1.

The initial value of (II.7) is
|{s | ys = r}|.

In summary, the method by Joachims (2006) goes through all r ∈ S and conducts
operations described above for i from 1 to l. Thus the cost is O(lk) for computing
l+i (w) and l−i (w),∀i. The detailed procedure was in Algorithm 2 of Joachims
(2006), but we rewrite it in Algorithm (I) by our notation.

This procedure is related to that in Section II.1. They differ in several aspects.
The algorithm here goes through all data k times, while the procedure in Section
II.1 needs only two passes, one for l+i (w), ∀i and another for l−i (w), ∀i. However,
the space needed here is only O(l), which is less than O(k + l) in Section II.1 for
maintaining count+(r), ∀r ∈ S.

III A Comparison Between TreeRankSVM and Tree-

TRON in Number of Iterations

In Section 4.4, we observed that the cutting plane method in TreeRankSVM is
slower than TRON. Because implementation details may affect the running time,
we examine the relative function values, pairwise accuracy and NDCG versus
number of iterations in Figure (II) by comparing Tree-TRON and TreeRankSVM.
For Tree-TRON, we use CG iterations rather than outer Newton iterations because
each CG has a similar complexity to that of an iteration in the cutting plane
method. The parameters used are the same as those for best pairwise accuracy

4

in Table 3. Because TreeRankSVM solves (2) while Tree-TRON solves (3), their
selected regularization parameters may be different. Similar to the experiments in
Section 4.4, we draw a horizontal line to indicate the performance of Tree-TRON
using its default stopping condition. In all problems Tree-TRON is faster, so this
experiment indicates that TRON is more suitable than cutting plane methods for
linear rankSVM.

IV The Possibility of Solving the Dual Problem

When nonlinear mappings are considered, methods for optimizing the standard
SVMs usually utilize the kernel function to solve the dual problem. From Appendix
A, the dual problems of (2) and (3) both have p variables. It is difficult to solve
such problems if p = O(l2). However, by removing some zero variables during the
optimization procedure, we may efficiently solve a smaller problem. If L2 loss is
used, from Appendix A, we have

wT (xi − xj) ≥ 1 ⇔ the corresponding dual variable is zero.

If at the optimal solution, two pairs (i, j) and (j, s) in P are in the correct order
with

wTxi −wTxj ≥ 1 and wTxj −wTxs ≥ 1,

then
wTxi −wTxs ≥ 1 (IV.1)

and the corresponding dual variable is zero. Therefore, in the best situation, only
O(l) of the p variables are zero. Then the situation is similar to that of using
partial pairs in Section 5. To check how good the sparsity is in practice, in Table
(I) we present the percentage of zero elements of the dual optimal solution. We
use a large penalty parameter C = 220 to get small training errors and therefore,
better sparsity.1 Unfortunately, the solution is very dense; more than 75% of the
elements are non-zero. A further check shows that while most pairs are correctly
classified, they satisfy

0 < wT (xi − xj) < 1

only, so the corresponding dual variable is still non-zero. Therefore, solving the
dual problem may not be an efficient option.

References

Olivier Chapelle and S. Sathiya Keerthi. Efficient algorithms for ranking with
SVMs. Information Retrieval, 13(3):201–215, 2010.

1Because of the lengthy training time of using parameter C = 220, we report
results of only five data sets.

5

Data sets Percentage of zero dual variables
MQ2007 5.15%
MQ2008 22.44%
YAHOO LTRC set 2 11.14%
MQ2007-list 19.64%
MQ2008-list 23.86%

Table (I): Sparsity of the dual optimal solution of L2-loss linear rankSVM. C = 220

is used.

Thorsten Joachims. A support vector method for multivariate performance mea-
sures. In Proceedings of the Twenty Second International Conference on Machine
Learning (ICML), 2005.

Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the
Twelfth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2006.

6

Relative function value Pairwise accuracy NDCG

(a) MQ2007

(b) MQ2008

(c) YAHOO LTRC set 2

(d) MQ2007-list

(e) MQ2008-list
Figure (II): The relation between iterations (CG iterations for Tree-TRON) and
function values, pairwise accuracy and NDCG.

7

	Introduction
	Direct Methods to Calculate l+i(bold0mu mumu wwprogram@epstopdfwwww), l-i(bold0mu mumu wwprogram@epstopdfwwww), +i(bold0mu mumu wwprogram@epstopdfwwww,bold0mu mumu vvprogram@epstopdfvvvv) and -i(bold0mu mumu wwprogram@epstopdfwwww,bold0mu mumu vvprogram@epstopdfvvvv)
	A Direct Counting Method
	Details of the Method in TJ06a

	A Comparison Between TreeRankSVM and Tree-TRON in Number of Iterations
	The Possibility of Solving the Dual Problem

