
ICML’15

Distributed Box-Constrained Quadratic Optimization for Dual Linear SVM

Ching-pei Lee LEECHINGPEI@GMAIL.COM
Dan Roth DANR@ILLINOIS.EDU

University of Illinois at Urbana-Champaign, 201 N. Goodwin Avenue, Urbana, IL 61801 USA

Abstract

Training machine learning models sometimes
needs to be done on large amounts of data that
exceed the capacity of a single machine, motivat-
ing recent works on developing algorithms that
train in a distributed fashion. This paper pro-
poses an efficient box-constrained quadratic opti-
mization algorithm for distributedly training lin-
ear support vector machines (SVMs) with large
data. Our key technical contribution is an ana-
lytical solution to the problem of computing the
optimal step size at each iteration, using an ef-
ficient method that requires only O(1) commu-
nication cost to ensure fast convergence. With
this optimal step size, our approach is superior to
other methods by possessing global linear con-
vergence, or, equivalently, O(log(1/ε)) iteration
complexity for an ε-accurate solution, for dis-
tributedly solving the non-strongly-convex linear
SVM dual problem. Experiments also show that
our method is significantly faster than state-of-
the-art distributed linear SVM algorithms includ-
ing DSVM-AVE, DisDCA and TRON.

1. Introduction
With the rapid growth of data volume, distributed machine
learning gains more importance as a way to address train-
ing with massive data sets that could not fit the capacity of
a single machine. Linear support vector machine (SVM)
(Boser et al., 1992; Vapnik, 1995) is a widely adopted
model for large-scale linear classification. Given train-
ing instances {(xi, yi) ∈ Rn × {−1, 1}}li=1, linear SVM
solves the following problem:

min
w∈Rn

fP (w) ≡ 1

2
wTw + C

l∑
i=1

ξ(w,xi; yi), (1)

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

where C > 0 is a specified parameter, and ξ is a loss func-
tion. Two common choices of ξ are

max(0, 1− yiwTxi), and max(0, 1− yiwTxi)
2,

which we refer to as L1-SVM and L2-SVM, respectively.

Linear SVM has been used in many applications, and its
single-machine training has been studied extensively. It is
well-known that instead of directly solving (1), optimizing
its dual problem shown below is sometimes faster (Hsieh
et al., 2008; Yuan et al., 2012), especially when l < n,
because there are fewer variables to optimize.

min
α∈Rl

f(α) ≡ 1

2
αT Q̄α− eTα

subject to 0 ≤ αi ≤ U, i = 1, . . . , l, (2)

where e is the vector of ones, Q̄ = Q + sI , Q =
Y X(Y X)T , X = [x1, . . . ,xl]

T , Y is a diagonal matrix
such that Yi,i = yi, I is the identity matrix, and

(s, U) =

{
(0, C) if L1-SVM,

(1/2C,∞) if L2-SVM.

Because the main computations in batch solvers for (1)
are matrix-vector products that can be naively parallelized,
several works have successfully adapted these solvers to
distributed environments (Agarwal et al., 2014; Zhang
et al., 2012; Zhuang et al., 2015; Lin et al., 2014). How-
ever, state-of-the-art single-machine dual algorithms are all
sequential and cannot be easily parallelized. Moreover, in
a distributed setting, because each machine only has a frac-
tion of the training data, and the cost of communication
and synchronization is relatively high, it is important to
consider algorithms with low communication cost. Con-
sequently, algorithms with a faster convergence rate are
desirable because a smaller number of iterations implies
a smaller number of communication rounds. We observe
that without careful consideration of this issue, existing
distributed dual solvers do not achieve satisfactory train-
ing speed. However, as mentioned above, given that a dual
solver might be more suitable for high-dimensional data, it
is important to develop better distributed dual linear SVM

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

algorithms for extremely large data sets of high dimension-
ality.

In this work, we propose an efficient box-constrained
quadratic optimization framework for solving (2) when
the training instances are distributed among K machines,
where the instances in machine k are {(xi, yi)}i∈Jk

. In
our setting, Jk are disjoint index sets such that ∪Kk=1Jk =
{1, . . . , l}. By considering a carefully designed positive
definite block-diagonal approximation of Q̄, at each iter-
ation our algorithm efficiently obtains a descent direction
that ensures fast convergence for (2) with low communica-
tion cost. We then conduct a line search method that only
requires negligible computation cost andO(1) communica-
tion to establish a global linear convergence rate. In other
words, our algorithm only requires O(log(1/ε)) iterations
to obtain an ε-accurate solution for (2). This convergence
rate is better than that of existing distributed dual solvers
for training L1-SVM, whose dual problem is not strongly
convex. We also discuss the main differences between our
algorithm and existing distributed algorithms for (2) and
point out the key differences.

Experiments show that our algorithm is significantly faster
than existing distributed solvers for (2). Our framework can
be easily extended to solve other similar problems.

This paper is organized as follows. Our algorithm and its
convergence analysis are described in Section 2. Section 3
discusses related works. We present experimental results in
Section 4. Section 5 concludes this work.

2. Distributed Box-Constrained Quadratic
Optimization

Before discussing our method, we summarize notations fre-
quently used in this paper. π(i) = k indicates that i ∈ Jk.
We will frequently use the following notation.

P(α) ≡ [−α1, U − α1]× · · · × [−αl, U − αl].

We denote ‖u‖2A ≡ uTAu for u ∈ Rt, and A ∈ Rt×t,
where t is a positive integer. For any v ∈ Rl, vJk

de-
notes the sub-vector of v that contains the coordinates in
Jk. Similarly, P(α)Jk

is the constraint subset of P(α) that
only has the coordinates indexed by Jk. For A ∈ Rl×l,
AJk,Jm

∈ R|Jk|×|Jm| denotes the sub-matrix of A cor-
responding to the entries Ai,j with i ∈ Jk, j ∈ Jm. If
Jk = Jm, we simplify it to AJk

. We denote by XJk
the

sub-matrix of X containing the instances in Jk, and, simi-
larly YJk

is the corresponding sub-diagonal matrix of Y .

2.1. Algorithm

Our algorithm starts with a feasible point α0 for (2) and
iteratively generates a sequence of solutions {αt}∞t=0. For
model evaluation at each iteration, we transform the current

αt to a primal solution by the KKT condition of (1).

wt = XTYαt. (3)

At the t-th iteration, we update the current αt by

αt+1 = αt + ηt∆α
t, (4)

where ηt ∈ R is the step size and ∆αt ∈ Rl is the up-
date direction. We first describe our method for computing
∆αt, and then present two efficient methods for calculat-
ing a good ηt for ∆αt.

Computing the Update Direction: In a distributed envi-
ronment, usually communication and synchronization are
expensive. Therefore, in order to reduce the training time,
we should consider high-order optimization methods that
require fewer iterations to converge. Therefore, we try
to obtain a good ∆αt by solving the following quadratic
problem that approximates (2).

∆αt ≡ arg min
d∈P(αt)

∇f(αt)Td+
1

2
dTHd, (5)

where H is an approximation of Q̄. Because machine k
only has access to those instances in Jk, it is natural to
consider the followingH to avoid frequent communication.

H = Q̃+ (s+ τ̃)I, where τ̃ =

{
τ if L1-SVM,

0 if L2-SVM,
(6)

τ > 0 is a small value to ensure positive definiteness, and

Q̃i,j =

{
Qi,j if π(i) = π(j),

0 otherwise.

After re-indexing the instances, we observe that the choice
of H in (6) is a symmetric, block-diagonal matrix with K
blocks, where the k-th block is

HJk
= YJk

XJk
(YJk

XJk
)T + (s+ τ̃)I.

Because H is block-diagonal, (5) can be decomposed into
the following independent sub-problems for k = 1, . . . ,K.

∆αt
Jk

= arg min
dJk
∈P(αt)Jk

∇f(αt)TJk
dJk

+
1

2
‖dJk

‖2HJk
. (7)

If wt is available to all machines, both HJk
and

∇f(αt)Jk
= YJk

XJk
wt + sαt

Jk
− e

can be obtained using only instances in machine k. Thus
the only communication required in this procedure is mak-
ingwt available to all machines. We see that obtainingwt

requires gathering information from all machines.

wt =

K⊕
k=1

XT
Jk
YJk
αt

Jk
. (8)

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

The symbol
⊕

represents the operation of receiving the
information from all machines and broadcasting the results
back to all machines. In practice, this can be achieved by
the allreduce operation in MPI.

With the availability of wt, (7) is in the same form
as (2), with Q̄, e, and P(0) being replaced by Q̄Jk

+
τ̃ I,∇f(αt)Jk

, and P(αt)Jk
, respectively. Therefore, the

smaller per machine problem can be solved by any existing
single machine dual linear SVM optimization methods. We
will discuss this issue in Section 2.3.

After ∆αt is computed, we need to calculate the step size
ηt to ensure sufficient function decrease. We discuss two
methods to obtain a good ηt. The first approach gives an
approximate solution while the second one computes the
optimal step size. Note that these methods can be applied to
any descent direction, and are not restricted to the direction
obtained by the above method.

Approximate approach for step size: We first consider
backtracking line search with the Armijo rule described in
Tseng & Yun (2009). Given the direction ∆αt, and the pa-
rameters σ, β ∈ (0, 1), γ ∈ [0, 1), the Armijo rule assigns
ηt to be the largest element in {βk}∞k=0 that satisfies

f(αt + βk∆αt)− f(αt) ≤ βkσ∆t, (9)

where

∆t ≡ ∇f(αt)T ∆αt + γ‖∆αt‖2H . (10)

To obtain the desired βk, a naive approach sequentially
tries k = 0, 1, . . . , and goes through the whole training data
to recompute f(αt + βk∆αt) for each k until (9) is satis-
fied. This approach is expensive because we do not know
ahead of time what value of k satisfies (9). If the direction
is not chosen carefully, it is likely that this approach will be
very time-consuming. To deal with this problem, observe
that, because f is a quadratic function with Hessian Q̄,

f(αt + βk∆αt)

=f(αt) + βk∇f(αt)T ∆αt +
β2k

2
‖∆αt‖2Q̄. (11)

Hence (9) can be simplified to

βk

2
‖∆αt‖2Q̄ ≤ (σ − 1)∇f(αt)T ∆αt + σγ‖∆αt‖2H ,

which implies

ηt = min(β0, βk̄), where k̄ ≡ d 1

log β
(log

2

‖∆αt‖2
Q̄

+ log
(

(σ − 1)∇f
(
αt
)T

∆αt + σγ‖∆αt‖2H
)

)e. (12)

We can obtain ‖∆αt‖2H , ‖∆αt‖2
Q̄

, and ∇f(αt)T ∆αt by

‖∆αt‖2H =

K⊕
k=1

(‖XT
Jk
YJk∆αt

Jk
‖2) + (s+ τ̃)

K⊕
k=1

(‖∆αJk‖
2),

(13)

‖∆αt‖2Q̄ = ‖
K⊕

k=1

XT
Jk
YJk∆αt

Jk
‖2 + s

K⊕
k=1

(‖∆αJk‖
2), (14)

and

∇f(αt)T ∆αt = (wt)T (

K⊕
k=1

XT
Jk
YJk

∆αt
Jk

) (15)

+ s

K⊕
k=1

(αt
Jk

)T ∆αt
Jk
−

K⊕
k=1

eT ∆αt
Jk
.

To reduce the communication cost, we replace (8) with

wt = wt−1 + ηt∆w
t−1, (16)

where

∆wt ≡
K⊕

k=1

XT
Jk
YJk

∆αt
Jk
. (17)

Thus obtaining wt still has the same communication cost,
but (14) and (15) can respectively be simplified to

‖∆αt‖2Q̄ = ‖∆wt‖2 + s

K⊕
k=1

‖(∆αt
Jk

)‖2, (18)

∇f(αt)T ∆αt = (wt)T ∆wt + s

K⊕
k=1

(αt
Jk

)T ∆αt
Jk

−
K⊕

k=1

eT ∆αt
Jk
. (19)

Thus, the two size-n allreduce of (8) and
⊕
XJk

YJk
∆αt

Jk

required in (15) can be achieved using only one size-n
allreduce. When ∆wt is available, obtaining (18)-(19) and
(13) requires only O(l + n) computation and O(1) addi-
tional communication. This additional O(l + n) compu-
tation is negligible in comparison with the O(ln) cost of
solving (5), and the new communication can be combined
into the allreduce operation for ∆wt by augmenting the
vector being communicated. With this method, backtrack-
ing line search can be done very efficiently.

Exact solution of the best step size: By substituting βk

with ηt in (11), we observe that f(αt + ηt∆α
t) is a

quadratic convex function of ηt. Therefore, we can obtain
η∗t that minimizes f(αt + ηt∆α

t) by

∂f(αt + ηt∆α
t)

∂ηt
= 0⇒ η∗t =

−∇f(αt)T ∆αt

(∆αt)T Q̄∆α
. (20)

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

Algorithm 1 A box-constrained quadratic optimization al-
gorithm for distributedly solving (2)

1. t← 0, given α0, computes w0 by (8).
2. While αt is not optimal:

2.1. Obtain ∆αt by distributedly solving (7) on K
machines in parallel.

2.2. Compute ∆wt =
⊕K

k=1X
T
Jk
YJk

∆αt
Jk

.
2.3. Compute (αt)T ∆αt, eT ∆αt,

⊕K
k=1 ‖∆αt

Jk
‖2,⊕K

k=1 ‖XT
Jk
YJk

∆αt
Jk
‖2 by allreduce.

2.4. Obtain ηt by (12) or (21).
2.5. αt+1 ← αt + ηt∆α

t, wt+1 ← wt + ηt∆w
t.

2.6. t← t+ 1.

Using (14) and (19), the computation of (20) has identi-
cal cost to the approximate approach. However, unlike
the previous method that guarantees ηt ≤ 1 and thus
ηt∆α

t ∈ P(αt), it is possible that η∗t > 1 in (20). In
this case, αt + η∗t ∆αt may not be a feasible point for (2).
To avoid the infeasibility, we consider

λi =

−αt

i/∆α
t
i if ∆αt

i < 0,
(U − αt

i)/(∆α
t
i) if ∆αt

i > 0,
∞ if ∆αt

i = 0.

and let

ηt = min(η∗t , min
1≤i≤l

λi). (21)

We can see from convexity that (21) is the optimal feasible
solution for ηt. The minimum λi over {1, . . . , l} is ob-
tained by an O(1) communication.

In L1-SVM, Q̄ is only positive semidefinite. Therefore,
‖∆αt‖2

Q̄
can be zero for a nonzero ∆αt. But this zero

denominator does not cause any problem in (12) or (21).
We will show in Lemma 2.1 in the next section that
∇f(αt)T ∆αt is negative provided ∆αt 6= 0. Con-
sequently, the last log term of k̄ in (12) is finite. If
(∆αt)T Q̄∆αt = 0, k̄ = −∞ because log β < 0. We
thus have ηt = β0 = 1 when ‖∆αt‖2

Q̄
= 0. In (21),

∇f(αt)∆αt < 0 ensures that η∗t > 0, hence when
(∆αt)T Q̄∆αt = 0, η∗t is ∞. Because of the min oper-
ation in (20) and since U is finite in L1-SVM, ηt is still
finite unless ∆αt = 0. We will show in the next section
that this only happens when αt is optimal.

In summary, our algorithm uses (16)-(17) to synchronize
information between machines, solves (7) to obtain the up-
date direction ∆αt, adopts (12) or (21) to decide the step
size ηt, and then updates αt using (4). A detailed descrip-
tion appears in Algorithm 1. In practice, steps 2.2 and 2.3
can be done in one allreduce operation.

2.2. Convergence Analysis

To establish the convergence of Algorithm (1), we first
show that the direction obtained from (5) is always a de-
scent direction and thus the line search computations in
(12) and (20) do not face the problem of 0/0 or ηt = 0.

Lemma 2.1 If H is positive definite, then αt is optimal if
and only if ∆αt = 0. Moreover, ∆αt obtained from (5) is
a descent direction for f(αt) such that∇f(αt)T ∆αt < 0.

Proof: 0 ≤ αt ≤ Ue indicates ∆αt = 0 is feasible for
(5). Because f(α) is convex, αt is optimal if and only if

∇f(αt)Td ≥ 0,∀d ∈ P(αt). (22)

Because H is positive definite, by strong convexity of (5),
(22) holds if and only if for all nonzero d ∈ P(αt),

∇f(αt)Td+
1

2
dTHd > ∇f(αt)T0 +

1

2
0TH0. (23)

Now if αt is not optimal, there exists d ∈ P(αt) such that
(23) does not hold. Thus,

∇f(αt)T ∆αt < ∇f(αt)T ∆αt +
1

2
(∆αt)TH∆αt ≤ 0.

That H is positive definite implies the strict inequality.

Lemma 2.1 can also be viewed as an application of Lem-
mas 1-2 in Tseng & Yun (2009).

The following two theorems show that Algorithm 1 pos-
sesses global linear convergence for problem (2). Namely,
for any ε > 0, Algorithm 1 requires at most O(log(1/ε))
iterations to obtain a solution of αt such that

(f(αt)− f(α∗)) ≤ ε, (24)

where α∗ is the optimal solution of (2).

Theorem 2.2 Algorithm 1 with the Armijo rule backtrack-
ing line search (12) has at least global linear convergence
rate for solving problem (2).

Proof Sketch: If we rewrite problem (2) as

min
α∈Rl

F (α) ≡ f(α) + P (α), (25)

where

P (α) ≡
l∑

i=1

Pi(α), Pi(α) ≡

{
0 if 0 ≤ αi ≤ U,
∞ otherwise,

then (5) can also be written as

∆αt = arg min
d

∇f(αt)Td+
1

2
‖d‖2H + P (αt + d).

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

Because we optimize over all instances at each iteration,
our algorithm can be seen as a cyclic block coordinate de-
scent method satisfying the Gauss-Seidel rule with only
one block. For L2-SVM, both Q̄ and H are positive def-
inite. For L1-SVM, Q̄ is only positive semidefinite, but
the τ̃ I term in (6) ensures H is positive definite. Thus Al-
gorithm 1 is a special case of the algorithm in Tseng &
Yun (2009) and satisfies their Assumption 1. Theorem 2 in
Tseng & Yun (2009) then provides local linear convergence
for our algorithm such that for some k0 ≥ 0,

f(αt+1)− f(α∗) ≤ θ(f(αt)− f(α∗)),∀t ≥ k0, (26)

where θ < 1 is a constant. This k0 indicates the number
of iterations required to make their local error bound as-
sumption hold. This local error bound has been shown to
hold from the first iteration of the algorithm for both L1-
SVM (Pang, 1987, Theorem 3.1) and L2-SVM (Wang &
Lin, 2014, Theorem 4.6). This implies k0 = 0. We thus
can obtain from (26) with k0 = 0 the desired O(log(1/ε))
rate for solving both L1-SVM and L2-SVM.

Alternatively, the same result can also be obtained by com-
bining the analysis in Yun (2014) and Tseng & Yun (2009).
A more detailed proof is shown in the supplementary ma-
terials.

Corollary 2.3 Algorithm 1 with exact line search (21) con-
verges at least as fast as Algorithm 1 with the Armijo rule
backtracking line search. Thus, it has at least global linear
convergence rate for solving problem (2).

Proof: Note that the global linear convergence in Theorem
2.2 is obtained by (26) with k0 = 0. If we denote by η̄t the
step size obtained from (12) and take η̂t as the step size
obtained from solving (21), we have from the convexity of
(2) that

f(αt + η̂t∆α
t) ≤ f(αt + η̄t∆α

t).

Therefore, (26) still holds because

f(αt+1)− f(α∗) = f(αt + η̂t∆α
t)− f(α∗)

≤f(αt + η̄t∆α
t)− f(α∗) ≤ θ(f(αt)− f(α∗)).

2.3. Practical Issues

As mentioned earlier, we can use any existing linear SVM
dual solver to solve (7) locally. In our implementation,
we consider dual coordinate descent methods (Hsieh et al.,
2008; Shalev-Shwartz & Zhang, 2013) that are reported to
work well in single-core training. To ensure (5) is mini-
mized, we can adopt the approach of Hsieh et al. (2008),
which cyclically goes through all training instances several
times until a stopping condition related to sub-optimality is
satisfied. Alternatively, we can also use the stochastic ap-
proach in Shalev-Shwartz & Zhang (2013) with enough it-
erations to have a high probability that the solution is close

enough to the optimum. An advantage of the cyclic ap-
proach is that it comes with an easily computable stopping
condition for sub-optimality that can prevent redundant in-
ner iterations. On the other hand, even when each machine
contains the same amount of data, the cyclic method could
not guarantee that each machine will finish optimizing the
sub-problems simultaneously, and hence some machines
might be idle for a long time. We thus consider a setting as
follows. For solving each sub-problem, we use the cyclic
approach, but at each inner iteration1, we follow the ap-
proach in Hsieh et al. (2008); Yu et al. (2012); Chang &
Roth (2011) to randomly shuffle the instance order, to have
faster empirical convergence. We also assimilate the idea
of stochastic solvers to set the number of inner iterations for
solving (5) identical for all machines throughout the whole
training procedure of Algorithm 1 to ensure that each ma-
chine stops solving (7) at roughly the same time. This hy-
brid method assimilates advantages of both approaches.

During the procedure of minimizing the dual problem, it
is possible that a descent direction for the dual problem
might not correspond to a descent direction for the primal
problem if we have not reached a solution that is close
enough to the optimum. This may happen in any algo-
rithms optimizing the dual problem. When (2) is prop-
erly optimized, strong duality of SVM problems ensure that
the corresponding primal objective value is also minimized.
However, in case where we need to stop our algorithm be-
fore reaching an accurate enough solution, a smaller primal
objective value is desirable. We can easily deal with this
problem by adopting the pocket algorithm for perceptrons
(Gallant, 1990). The idea is to compute the primal func-
tion value at each iteration and maintain thewt that has the
smallest primal objective value as the current model. Now
that the primal objective value is available, we can use the
relative duality gap as our stopping condition.

(fP (wt)− (−f(αt))) ≤ ε(fP (0)− (−f(0))) (27)

Computing the primal function value is expensive in the
single-machine setting, but it is relatively cheap in dis-
tributed settings because fewer instances are processed by
each machine, and usually the training cost is dominated
by communication and synchronization.

3. Related Works
Our algorithm is closely related to the methods proposed
by Pechyony et al. (2011); Yang (2013). Even though these
approaches were originally discussed in different ways,
they can be described using our framework. The discussion
that follows indicates that our approach provides better the-
oretical guarantees than these related approaches.

1Here one inner iteration means passing through the data once.

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

Pechyony et al. (2011) proposed two methods for solv-
ing L1-SVM. The first one, DSVM-AVE, iteratively solves
(5) with H = Q̃ to obtain ∆αt, while ηt is fixed to be
1/K. Its iteration complexity is O(1/ε) for L1-SVM and
O(log(1/ε) for L2-SVM (Ma et al., 2015).

The second approach in Pechyony et al. (2011), called
DSVM-LS, conducts line search for ∆αt in the primal
problem. However, line search in the primal objective func-
tion is more expensive because it requires passing through
the whole training data to evaluate the function value for
each backtracking conducted. Also, DSVM-LS does not
have convergence guarantee. On the other hand, our ap-
proach conducts efficient line searches in the dual problem
with a very low cost. The line search approach in our al-
gorithm is the essential step to guaranteeing global linear
convergence for solving L1-SVM. The multi-core paral-
lel primal coordinate descent method in Bian et al. (2014)
is similar to DSVM-LS in conducting primal line search.
They solve L1-regularized logistic regression problems in
the primal by an approach similar to solving (25) with
a diagonal H and conducting Armijo line search. Their
method has guaranteed convergence and can be adopted to
L2-SVM. However, as mentioned above, line search for the
primal problem is expensive. Also, their method requires
differentiable loss term and is not applicable to L1-SVM.

DisDCA (Yang, 2013) can optimize a class of dual prob-
lems including (2). This approach iteratively solves (5)
with a stochastic solver and the step size is fixed to ηt = 1.
Yang (2013) proposed a basic and a practical variant, both
of which use positive semi-definite H . In the basic variant,
H is a diagonal matrix such thatHi,i = mKQi,i, wherem
is the number of instances used each time (5) is solved. The
author showed that this variant requires O(log(1/ε)) iter-
ation complexity to satisfy (27) in expected function val-
ues for smooth-loss problems like L2-SVM, and O(1/ε)
for Lipschitz continuous losses such as L1-SVM. Note that
an ε-accurate solution for (27) is roughly εCl-accurate for
(24), so to compare the constants for convergence in differ-
ent algorithms, we need to properly scale ε. In the practical
variant of DisDCA, H = KQ̃ + sI . Yang et al. (2014)
provides convergence for this variant only under the unre-
alistic assumption Q̄ = Q̃. Recently, Ma et al. (2015) show
that when L2 regularization is used, for both DSVM-AVE
and the practical variant of DisDCA, the number of itera-
tions required to satisfy (27) in expected function values
are also O(log(1/ε)) and O(1/ε) for smooth-loss prob-
lems and problems with Lipschitz continuous losses, re-
spectively. A key difference between these results and ours
is that we only requireO(log(1/ε)) iterations for L1-SVM,
and our result is for deterministic function values, which is
stronger than the expected function values.

Ma et al. (2015) proposed a framework CoCoA+, and this

Data set l n #nonzeros
webspam 280, 000 *16, 609, 143 1, 044, 393, 506
url 1, 916, 904 3, 231, 961 221, 663, 296
epsilon 400, 000 2, 000 800, 000, 000
*: Among the feature dimensions, only 680, 715 coordinates have
nonzero entries, but we still use the original data to examine the
situation that communication cost is extremely high.

Table 1. Data statistics. For webspam and url, test sets are not
available so we randomly split the original data into 80%/20% as
training set and test set, respectively.

framework in their experimental setting reduces to the prac-
tical variant of DisDCA (Yang, 2013). Their experiments
showed that the DisDCA practical variant is faster than
other existing approaches.

Most other distributed linear SVM algorithms optimize (1).
Primal batch solvers that require computing the full gra-
dient or Hessian-vector products are inherently paralleliz-
able and can be easily extended to distributed environ-
ments because the main computations are matrix-vector
products like Xw. Vowpal Wabbit (VW) by Agarwal et al.
(2014) uses a distributed L-BFGS method and outperforms
stochastic gradient approaches. Zhuang et al. (2015); Lin
et al. (2014) propose a distributed trust region Newton
method (TRON) that works well and is faster than VW.
These second-order Newton-type algorithms only work on
differentiable primal problems like L2-SVM, but could not
be applied to L1-SVM. Another popular algorithm for dis-
tributedly solving (1) without requiring differentiability is
the alternating direction method of multipliers (ADMM)
(Boyd et al., 2011). Zhang et al. (2012) applied ADMM to
solve linear SVM problems. However, ADMM is known
to converge slowly and these works do not provide con-
vergence rates. Using Fenchel dual, Hazan et al. (2008)
derived an algorithm that is similar to ADMM, and showed
that their algorithm possesses global linear convergence in
their reformulated problem for L1-SVM. However, there
are Kl variables in their problem, and thus the training
speed should be slower. Experiment results in Yang (2013);
Zhuang et al. (2015) also verify that ADMM approaches
are empirically slower than other methods.

4. Experiments
The following algorithms are compared in our experiments.
• DisDCA (Yang, 2013): we consider the practical variant

because it is shown to be faster than the basic variant.
• TRON (Zhuang et al., 2015): this method only works on

L2-SVM. We use the package MPI-LIBLINEAR 1.96.2

• DSVM-AVE (Pechyony et al., 2011).
• BQO-E: our box-constrained quadratic optimization al-

2Downloaded from http://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/distributed-liblinear/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

Data set ε
L1-SVM solvers L2-SVM solvers

BQO-E BQO-A DisDCA DSVM-AVE BQO-E BQO-A DisDCA DSVM-AVE TRON
url 0.3 2,162.8 3,566.5 6,624.0 8,277.2 68.1 133.0 248.8 299.0 314.2
epsilon 0.01 3.4 2.6 3.0 2.8 2.3 5.2 2.8 3.7 6.7
webspam 0.01 35.1 29.8 27.4 42.3 16.9 29.6 25.9 40.3 123.7

Table 2. Training time required for a solver to reach (fP (wt)−fP (w∗)) ≤ εfP (w∗). url uses larger ε because of longer training time.

Data set ε
L1-SVM solvers L2-SVM solvers

BQO-E BQO-A DisDCA DSVM-AVE BQO-E BQO-A DisDCA DSVM-AVE
url 0.04 1,092.9 1,801.2 3,524.2 4,343.4 1,328.6 2,201.1 4,251.2 5,126.6
epsilon 0.01 2.8 3.9 8.0 13.2 6.3 10.9 24.4 28.1
webspam 0.01 21.7 30.6 54.7 79.5 19.8 30.3 54.3 84.9

Table 3. Training time required for a solver to reach (f(α∗)− f(αt)) ≤ εf(α∗). url uses larger ε because of longer training time.

gorithm with exact line search.
• BQO-A: our algorithm with Armijo line search. We fol-

low Tseng & Yun (2009) to use β = 0.5, σ = 0.1, γ = 0.

In order to have a fair comparison between algorithms,
all methods are implemented using the MPI-LIBLINEAR
structure to prevent training time differences resulting from
different implementations. Note that the recent work Ma
et al. (2015) uses the same algorithm as DisDCA so our
comparison already includes it.

In BQO-E and BQO-A, τ = 0.001 is used. All meth-
ods are implemented in C++/MPI. ADMM is excluded be-
cause DisDCA is reported to outperform it, and its speed
is dependent on additional parameters. The code used in
the experiments is available at http://github.com/
leepei/distcd_exp/.

We compare different dual algorithms in terms of the rela-
tive dual objective function value.

|(f(αt)− f(α∗))/f(α∗)|, (28)

α∗ is obtained approximately by running our method with
a strict stopping condition. To have a fair comparison with
TRON which solves the primal problem, we also report
the relative primal objective function values and the accu-
racies relative to the accuracy at the optimum. The pocket
approach discussed in Section 2.3 is adopted in all dual al-
gorithms.

We use 16 nodes in a cluster. Each node has two Intel HP
X5650 2.66GHZ 6C Processors, and one core per node is
used. The MPI environment is MPICH2 (Gropp, 2002).

The statistics of the data sets in our experiments are shown
in Table 1. All of them are publicly available.3 Instances
are split across machines in a uniform random fashion. We
fix C = 1 in all experiments for a fair comparison in opti-
mization. Therefore, some algorithms may have accuracies

3http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets.

(a) L1-SVM: url (b) L2-SVM: url

(c) L1-SVM: webspam (d) L2-SVM: webspam

Figure 1. Time versus relative dual objective value (28).

exceeding that of the optimal solution because the best C is
not chosen. We note, though, that once parameter selection
is conducted, the method that decreases the function value
faster should also achieve the best accuracy faster.

Since this work aims at a framework that can accommo-
date any local solvers, we use the same local solver set-
ting for DisDCA, DSVM-AVE and our algorithm. In par-
ticular, at each time of solving (5), we randomly shuffle
the instance order, and then let each machine pass through
all local instances once. The training time could be im-
proved for high-dimensional data if we use more inner iter-
ations, but our setting provides a fair comparison by having
computation-communication ratios similar to TRON.

Tables 2-3 show the results of the primal and dual objective,
respectively. More detailed examination of dual objective
and relative accuracies are in Figures 1-2. Due to space
limit, we only present results on two data sets. More results
are discussed in the supplement. In most cases, BQO-E
reduces the primal objective the fastest. Moreover, BQO-E
always reduces the dual objective significantly faster than

http://github.com/leepei/distcd_exp/
http://github.com/leepei/distcd_exp/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

(a) L1-SVM: url (b) L2-SVM: url

(c) L1-SVM: webspam (d) L2-SVM: webspam

Figure 2. Time versus relative accuracy.

Training Time

(a) epsilon (b) webspam

Training Time + IO Time

(c) epsilon (d) webspam

Figure 3. Speedup of training L2-SVM. Top: training time. Bot-
tom: total running time including training and data loading time.

other solvers and almost always reaches stable accuracies
the earliest. Because BQO-A is inferior to BQO-E in most
cases, it is excluded from later comparisons.

We then examine the speedup of solving L2-SVM using
different numbers of machines. In this comparison, we use
the two largest data sets webspam and epsilon that repre-
sent the cases l � n and n � l respectively. The results
are in Figure 3. We present both training time speedup and
total running time speedup. In both data sets, the training
time speedup of our algorithm is worse than TRON but
better than other methods. But BQO-E has significantly
better speedup of overall running time when the I/O time
is included. A further investigation of the training time and
data loading time in Figure 4 shows that this running time
speedup of BQO-E results from the fact that BQO-E has
shorter training time in all cases. Thus, the data loading

(a) epsilon (b) webspam

Figure 4. Training time (I/O time excluded) of L2-SVM using dif-
ferent numbers of machines.

time is the bottleneck of the running time in BQO-E, and
decreasing the data loading time can significantly improve
the running time, even if its training time does not improve
much with more machines.

From the results above, our method is significantly faster
than the state-of-the-art primal solver TRON and all exist-
ing distributed dual linear SVM algorithms.

Note that the comparison between DSVM-AVE and
DisDCA accords the results in the results in Ma et al.
(2015) that when smaller λ (equivalent to larger weight on
the loss term) is used, the difference between the two algo-
rithms is less significant. This can also be verified by the re-
sult on the url data set that has larger l and thus a larger loss
term with a fixed C, which is also equivalent to a λ smaller
than that being considered in Ma et al. (2015). Additional
experiments in the supplement show that for smaller C, the
differences are significant and DisDCA is superior. But in
these cases, most algorithms finish training in a very short
time and thus the setting of smaller C does not provide
meaningful comparisons.

5. Conclusions
In this paper, we present an efficient method for distribut-
edly solving linear SVM dual problems. Our algorithm is
shown to have better theoretical convergence rate and faster
empirical training time than state-of-the-art algorithms. We
plan to extend this work to problems like structured SVM
(Tsochantaridis et al., 2005) where optimizing the primal
problem is difficult. Based on this work, we have ex-
tended the package MPI-LIBLINEAR (after version 1.96)
at http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/distributed-liblinear/ to
include the proposed implementation.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

Acknowledgment
This material is based on research sponsored by DARPA
under agreement number FA8750-13-2-0008. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA
or the U.S. Government.

The authors thank the Illinois Campus Cluster Program for
providing computing resources required to conduct experi-
ments in this work. We also thank the anonymous review-
ers for their comments, and thank Eric Horn for proof-
reading the paper. Ching-Pei Lee thanks Po-Wei Wang
for fruitful discussion and great help, thanks Chih-Jen Lin,
Hsiang-Fu Yu, and Hsuan-Tien Lin for their valuable sug-
gestions, thanks Martin Jaggi for the pointer to the conver-
gence proof of the practical variant of DisDCA, and thanks
Tianbao Yang for discussion on DisDCA.

References
Agarwal, Alekh, Chapelle, Olivier, Dudik, Miroslav, and

Langford, John. A reliable effective terascale linear
learning system. Journal of Machine Learning Research,
15:1111–1133, 2014.

Bian, Yatao, Li, Xiong, and Liu, Yuncai. Parallel coordi-
nate descent Newton for large-scale L1-regularized min-
imization. Technical report, 2014. arXiv:1306.4080v3.

Boser, Bernhard E., Guyon, Isabelle, and Vapnik, Vladimir.
A training algorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on Computa-
tional Learning Theory, pp. 144–152. ACM Press, 1992.

Boyd, Stephen, Parikh, Neal, Chu, Eric, Peleato, Borja, and
Eckstein, Jonathan. Distributed optimization and statisti-
cal learning via the alternating direction method of mul-
tipliers. Foundations and Trends in Machine Learning,
3(1):1–122, 2011.

Chang, Kai-Wei and Roth, Dan. Selective block minimiza-
tion for faster convergence of limited memory large-
scale linear models. In Proceedings of the Seventeenth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2011.

Gallant, Stephen I. Perceptron-based learning algorithms.
Neural Networks, IEEE Transactions on, 1(2):179–191,
1990.

Gropp, William. MPICH2: A new start for MPI implemen-
tations. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pp. 7–7. Springer, 2002.

Hazan, Tamir, Man, Amit, and Shashua, Amnon. A paral-
lel decomposition solver for SVM: Distributed dual as-
cend using Fenchel duality. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–8. IEEE, 2008.

Hsieh, Cho-Jui, Chang, Kai-Wei, Lin, Chih-Jen, Keerthi,
S. Sathiya, and Sundararajan, Sellamanickam. A dual
coordinate descent method for large-scale linear SVM.
In Proceedings of the Twenty Fifth International Confer-
ence on Machine Learning (ICML), 2008.

Lin, Chieh-Yen, Tsai, Cheng-Hao, pei Lee, Ching, and Lin,
Chih-Jen. Large-scale logistic regression and linear sup-
port vector machines using Spark. In Proceedings of the
IEEE International Conference on Big Data, pp. 519–
528, 2014.

Ma, Chenxin, Smith, Virginia, Jaggi, Martin, Jordan,
Michael I, Richtárik, Peter, and Takáč, Martin. Adding
vs. averaging in distributed primal-dual optimization. In
Proceedings of the 32nd International Conference on
Machine Learning (ICML), 2015.

Pang, Jong-Shi. A posteriori error bounds for the linearly-
constrained variational inequality problem. Mathematics
of Operations Research, 12(3):474–484, 1987.

Pechyony, Dmitry, Shen, Libin, and Jones, Rosie. Solving
large scale linear SVM with distributed block minimiza-
tion. In Neural Information Processing Systems Work-
shop on Big Learning: Algorithms, Systems, and Tools
for Learning at Scale, 2011.

Shalev-Shwartz, Shai and Zhang, Tong. Stochastic dual co-
ordinate ascent methods for regularized loss minimiza-
tion. Journal of Machine Learning Research, 14:567–
599, 2013.

Tseng, Paul and Yun, Sangwoon. A coordinate gradient
descent method for nonsmooth separable minimization.
Mathematical Programming, 117:387–423, 2009.

Tsochantaridis, Ioannis, Joachims, Thorsten, Hofmann,
Thomas, and Altun, Yasemin. Large margin methods for
structured and interdependent output variables. Journal
of Machine Learning Research, 6:1453–1484, 2005.

Vapnik, Vladimir. The Nature of Statistical Learning The-
ory. Springer-Verlag, New York, NY, 1995.

Wang, Po-Wei and Lin, Chih-Jen. Iteration complexity
of feasible descent methods for convex optimization.
Journal of Machine Learning Research, 15:1523–1548,
2014.

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

Yang, Tianbao. Trading computation for communication:
Distributed stochastic dual coordinate ascent. In Ad-
vances in Neural Information Processing Systems 26, pp.
629–637, 2013.

Yang, Tianbao, Zhu, Shenghuo, Jin, Rong, and Lin, Yuan-
qing. On theoretical analysis of distributed stochastic
dual coordinate ascent. Technical report, 2014. arXiv
preprint arXiv:1312.1031.

Yu, Hsiang-Fu, Hsieh, Cho-Jui, Chang, Kai-Wei, and Lin,
Chih-Jen. Large linear classification when data cannot fit
in memory. ACM Transactions on Knowledge Discovery
from Data, 5(4):23:1–23:23, February 2012.

Yuan, Guo-Xun, Ho, Chia-Hua, and Lin, Chih-Jen. Recent
advances of large-scale linear classification. Proceedings
of the IEEE, 100(9):2584–2603, 2012.

Yun, Sangwoon. On the iteration complexity of cyclic coor-
dinate gradient descent methods. SIAM Journal on Op-
timization, 24(3):1567–1580, 2014.

Zhang, Caoxie, Lee, Honglak, and Shin, Kang G. Efficient
distributed linear classification algorithms via the alter-
nating direction method of multipliers. In Proceedings
of the 15th International Conference on Artificial Intel-
ligence and Statistics, 2012.

Zhuang, Yong, Chin, Wei-Sheng, Juan, Yu-Chin, and Lin,
Chih-Jen. Distributed Newton method for regularized
logistic regression. In Proceedings of The Pacific-Asia
Conference on Knowledge Discovery and Data Mining
(PAKDD), 2015.

Supplementary Materials

A. More Details on Convergence Analysis
In this section, we will establish a detailed convergence
analysis for our methods. The main idea follows from the
framework of Tseng & Yun (2009) and substitutes the local
error bound with the global error bound given in Wang &
Lin (2014). Note that the result in Yun (2014) does not di-
rectly apply here because H = I is assumed in that work,
but their analysis can also be modified for other symmet-
ric, positive definite H by applying lemmas in Section 3 of
Tseng & Yun (2009) to get the same result as ours.

For any matrix A, let λmin(A) denotes the smallest eigen-
value of A and λmax(A) denotes the largest eigenvalue of
A.

A.1. L2-SVM

For L2-SVM, we have that λmin(Q̄) ≥ 1/2C, so clearly f
is 1/2C strongly convex. In other words, ∀α1,α2 ≥ 0,

1

2C
‖α1 −α2‖2 ≤ (α1 −α2)T Q̄(α1 −α2)

=(∇f(α1)−∇f(α2))T (α1 −α2).

Also the gradient of f is λmax(Q̄) Lipschitz continuous

‖∇f(α1)−∇f(α2)‖ =
√

(α1 −α2)T Q̄2(α1 −α2)

≤ λmax(Q̄)‖α1 −α2‖. (29)

Thus by Theorem 3.1 in Pang (1987), we have

‖α−α∗‖ ≤ 2C(1 + λmax(Q̄))‖∇+f(α)‖,

where

∇+f(α) ≡ α− [α−∇f(α)]+P(0),

[α]+P(0) ≡ arg min
β∈P(0)

‖α− β‖.

Note that in our case, the definition of ∇+f(α) is equiv-
alent to that of dI(α) in Assumption 2(a) in Tseng &
Yun (2009). Thus this assumption is satisfied with τ =
2C(1 + λmax(Q̄)), ε = ∞ for any ξ. Also note that As-
sumption 2(b) of Tseng & Yun (2009) always holds in con-
vex optimization problems. Therefore, k̄ = 0, τ ′ = τ in
Equation (36), and k̂ = 0 in Equation (37) of Tseng & Yun
(2009). Following their analysis and their Lemma 5(b), we
then have

f(αt+1)−f(α∗) ≤ C2

1 + C2
(f(αt)−f(α∗)),∀t ∈ N∪{0},

(30)
where

C2 = C1/(σβmin{1, 1− σ + σγ

Cλmax(Q̄)
}), (31)

and C1 is a constant that only depends on
λmax(Q̄), λmin(Q̄), λmax(H), λmin(H), and C.

A.2. L1-SVM

For the case of L1-SVM, we see that the problem is of the
form

min
α∈Rl

f(α) = g((Y X)Tα)− eTα

subject to α ∈ P(0),

where
g(·) =

1

2
‖ · ‖2

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

is 1 strongly convex. From (29), we know that the gra-
dient of f is λmax(Q̄) Lipschitz continuous. In addi-
tion, it is clear that P(0) is a polyhedral set. Thus,
according to Theorem 4.6 in Wang & Lin (2014), As-
sumption 2(a) of Tseng & Yun (2009) is also satisfied
with a τ that depends on C, λmax(Q̄), λmax(H̄), f(α0) −
f(α∗), ‖∇f(α∗)‖, (α∗)TQα∗ and τ̃ in (6). We can then
substitute this result into (31) to get a similar result to (30).
Since the rates are related to the eigenvalues of H , it will
be interesting to consider this property to construct H that
has a better convergence rate upper bound. We leave this
as a future research direction.

A.3. Discussion

Our analysis indicates that the convergence speed of our
method in (30) is independent of both l and n. Thus the it-
eration complexity depends on l only via the optimal func-
tion value, which is upper bounded by fP (0) = Cl. If we
consider the scaled problem fp(w)/Cl and f(α)/Cl used
in other works including Yang (2013); Ma et al. (2015),
then the iteration complexity of our method is totally inde-
pendent of l and n.

This result is not surprising, because we are considering
the rounds of communication and outer iteration, while the
overall training time might still be dependent on l and n.
Note that the data dimension n does not affect the number
of variables being optimized, and thus does not contribute
to the iteration complexity. However, note that n affects the
training time for solving the local-sub-problems at each it-
eration, and the communication cost is linear to n as long as
a method synchronizesw. Also, in the analysis of Wang &
Lin (2014) for using cyclic coordinate descent method to
train linear SVM, the training time depends on l because
in this method, the definition of one iteration is passing
through all instances once and thus the running time will
be at least l times the iteration complexity. But since our
framework can use any sub-problem solver, this is might
be avoided by considering a solver whose training time is
independent of l.

B. Additional Experiment Results
In this section, we provide more experimental results.

B.1. Results Appeared Partially in Section 4

We present more results under the same setting of Section
4. Figure 5 presents the dual objective values and accura-
cies of epsilon. Figure 6 shows the primal objective values
of all data sets.

B.2. Training Time Profile

To better understand the bottleneck of the training time,
we investigate the fraction of the total training time taken
by computation, synchronization and communication. The
result is presented in Figure 7. By synchronization cost,
we mean the time amount spent when one machine fin-
ished solving its corresponding sub-problem (7) but has not
started communication because it is idle to wait for other
machines to finish solving (7). Note that since in our ex-
perimental setting, each solver conducts one round of size-
n communication every time it goes through the whole data
once, the behaviors in communication and synchronization
of all solvers should be similar. Therefore, we only report
the result of BQO-E. We can see that for sparse data sets
url and webspam, the proportion of computation time is
rather low and synchronization time is larger. This means
that each machine spent a different amount of time to solve
the local sub-problem. Thus, one might consider setting
the number of instances being examined at each iteration
to be identical for all machines to reduce the synchroniza-
tion time. This will be another advantage over primal batch
solvers that require exactly one pass through all instances
at each round of communication.

B.3. Speedup On Primal Objective Value

In Section 4, the training time of the speedup experiments is
obtained by the following. We reported the time for TRON
to reach wt satisfying

|f
P (wt)− fP (w∗)

fP (w∗)
| ≤ 0.01, (32)

where w∗ is the optimal solution of (1). For DSVM-AVE
and BQO-E that minimize (2), we report the time for them
to obtain αt such that

|f(αt)− f(α∗)

f(α∗)
| ≤ 0.01.

Here we report the result of considering (32) for
DSVM-AVE and BQO-E in Figures 8-9. In this setting,
both DSVM-AVE and BQO-E have better speedups. Also,
DSVM-AVE and BQO-E have similar training time in ep-
silon, but BQO-E is significantly better in webspam in
terms of both training time and speedup.

B.4. Experiments on Different Values of C

We also conduct additional experiments using different val-
ues of C. For the data sets we considered, C = 1 is already
large enough because the number of instances is large and
the loss term is summation instead of average over all in-
stances. Thus we consider smaller C. Tables 4-5 present
the result of C = 1e− 2 while Tables 6-7 present the result
of C = 1e − 4. We can see that when the problems are

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

easier to solve, i.e., when the training time of all methods
is short, DisDCA is usually the fastest, while our method
is still faster than DSVM-AVE and TRON in most cases.
However, in these situations, the training time does not af-
fect the total running time too much, because in this case
the data loading time is the bottleneck. Moreover, note that
our line search methods are also applicable to DisDCA to
further improve the training time in this situation.

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

L1-SVM L2-SVM

(a) Relative dual objective value

(b) Relative accuracy

Figure 5. Experiment results on epsilon. Top: time versus relative dual objective value. Bottom: time versus relative accuracy.

(a) L1-SVM: url (b) L2-SVM: url (c) L1-SVM: webspam

(d) L2-SVM: webspam (e) L1-SVM: epsilon (f) L2-SVM: epsilon

Figure 6. Time versus relative primal objective value. Time is in seconds. Top: L1-SVM, bottom: L2-SVM. Note that in webspam, the
function values of TRON for L2-SVM are too large to appear in the figure.

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

Figure 7. Percentage of computation, synchronization, and communication in the total training time.

Training Time

(a) epsilon (b) webspam

Training Time + IO Time

(c) epsilon (d) webspam

Figure 8. Speedup of different methods training L2-SVM. All algorithms use (32) to decide training time. Top: speedup of training time.
Bottom: speedup of the total running time including training and data loading time.

(a) epsilon (b) webspam

Figure 9. Training time of L2-SVM using different numbers of machines. All algorithms use (32) to decide training time.

Distributed Box-Constrained Quadratic Optimization for Dual Linear Support Vector Machines

Data set L1-SVM solvers L2-SVM solvers
ε BQO-E BQO-A DisDCA DSVM-AVE BQO-E BQO-A DisDCA DSVM-AVE TRON

url 0.01 21.4 21.4 70.5 79.3 42.7 146.8 98.3 115.5 46.9
epsilon 0.01 2.1 1.2 0.4 2.2 1.6 3.3 0.4 1.6 3.1
webspam 0.01 17.1 14.1 1.8 15.2 6.6 9.0 1.8 12.0 35.9

Table 4. Training time required for a solver to reach (fP (wt)− fP (w∗)) ≤ εfP (w∗). We present results of C = 0.01.

Data set L1-SVM solvers L2-SVM solvers
ε BQO-E BQO-A DisDCA DSVM-AVE BQO-E BQO-A DisDCA DSVM-AVE

url 0.01 10.8 11.3 36.4 41.3 296.6 593.1 1,025.6 1,203.0
epsilon 0.01 2.0 1.6 0.5 12.2 1.8 2.5 0.6 6.4
webspam 0.01 11.3 16.4 2.4 56.2 8.4 10.7 2.6 28.6

Table 5. Training time required for a solver to reach (f(α∗)− f(αt)) ≤ εf(α∗). We present results of C = 0.01.

Data set L1-SVM solvers L2-SVM solvers
ε BQO-E BQO-A DisDCA DSVM-AVE BQO-E BQO-A DisDCA DSVM-AVE TRON

url 0.01 3.3 5.9 1.1 3.1 1.3 9.1 0.8 2.7 9.2
epsilon 0.01 0.3 0.3 0.3 0.9 0.3 0.3 0.3 2.1 0.9
webspam 0.01 5.9 7.5 1.9 19.4 10.1 8.1 2.1 15.3 13.4

Table 6. Training time required for a solver to reach (fP (wt)− fP (w∗)) ≤ εfP (w∗). We present results of C = 0.0001.

Data set L1-SVM solvers L2-SVM solvers
ε BQO-E BQO-A DisDCA DSVM-AVE BQO-E BQO-A DisDCA DSVM-AVE

url 0.01 2.7 6.1 0.8 11.9 2.2 3.6 5.2 8.9
epsilon 0.01 0.3 0.3 0.3 12.3 0.3 0.4 0.3 6.0
webspam 0.01 6.7 7.5 1.9 65.7 10.1 7.1 2.1 30.1

Table 7. Training time required for a solver to reach (f(α∗)− f(αt)) ≤ εf(α∗). We present results of C = 0.0001.

