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Regularized Optimization Problem

Consider the following regularized optimization problem:

min
x∈Rn

F (x) := f(x) + Ψ(x), (REG)

Assume solution set Ω 6= ∅

Loss function f : differentiable (other assumptions depend on algorithms)

Regularizer Ψ: convex and lower semicontinuous
Regularizers for inducing structures in the solution, like
- (Group) sparsity: feature selection, model compression, faster prediction

- Low rank (for matrix/tensor): robustness, denoising, ground truth recoverability
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Structure-inducing in the Exact Solution

Viewing from the first-order optimality condition, such regularizers induce desired
structures exactly at stationary points

But iterative algorithms we use can only generate approximate solutions to an
optimization problem

Convergence guarantees we get are often that the limit points of the iterates are
stationary

There is usually no guarantee for the approximate solutions to possess the same
structure as the limit points
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Fast Convergence Does not Imply Structure

Example 1

min
x∈R2

(x1 − 2.5)2 + (x2 − 0.3)2 + ‖x‖1,

Ψ(·) = ‖ · ‖1, the only solution is x∗ = (2, 0): with sparsity

Consider {xt} with xt1 = 2 + f(t), xt2 = f(t), for some f(t) > 0 with f(t) ↓ 0

f is arbitrary, both the iterates and the corresponding objective values converge to the
optimum arbitrarily fast, but no xt has the same sparsity pattern as x∗
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Structure, Manifold, and Partial Smoothness

Points sharing the same structure as a stationary point (sparse pattern, matrices of the
same rank, . . . ) can often be locally represented by a smooth manifold

Promotion of a structure is often achieved through a special kind of nonsmoothness,
called partial smoothness, of the regularizer

A function is partly smooth at a point x∗ if it is locally smooth in a neighborhood within
an active manifold containing x∗, but nonsmooth along directions leaving the manifold
(normal space)

The active manifold is locally the optimal structure (the one with the lowest possible
dimension) we can get for any sequence converging to the same limit point

Select regularizer for its corresponding active manifold
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Manifold Identification

If we are able to find/identify such an optimal manifold, even with approximate
solutions, we can get the desired target structure

By identification, we mean for an algorithm to generate iterates that eventually stay
within this optimal manifold

We will utilize tools from manifold identification (pioneered by Wright (1993), later
further extended by Lewis (2002); Hare and Lewis (2004)) to design suitable algorithms
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Solution Structure Utilization

Those optimal manifolds are usually of a dimensionality much lower than the original
dimension of the optimization problem
Could we utilize the solution structure, namely the optimal manifold, to devise
algorithms that
1 are guaranteed to find the optimal structure,
2 converge fast, and
3 require lower per-iteration cost?

The original goal of adding a regularizer is finding the right structure, and thus just
discussing convergence guarantees or rates for regularized problems without considering
the structure seems (to me) insufficient

Although in many cases of machine learning, for generalization error we don’t need a
highly precise solution, it might be a different story for finding the structure
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Partial Smoothness

Definition 2 (Partly smooth (Hare and Lewis, 2004))
A convex function Ψ is partly smooth at x∗ relative to a setMx∗ 3 x∗ if ∂Ψ(x∗) 6= ∅ and:
1 Around x∗, Mx∗ is a C2-manifold and Ψ|Mx∗ is C2.
2 The affine span of ∂Ψ(x∗) is a translate of the normal space to Mx∗ at x∗.
3 ∂Ψ is continuous at x∗ relative to Mx∗ .

Roughly speaking: function value changes
smoothly along the active manifold Mx∗ around x∗,

but sharply along directions leaving to the manifold
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Partly Smooth Regularizers

Some popular regularizers we will use in this talk:
`1-norm, `0-norm: Mx∗ = {y | yi = 0,∀i : x∗i = 0}

Group-LASSO norm: Mx∗ = {y | yI = 0,∀I : x∗I = 0}, I are blocks/groups

Nuclear norm: MX∗ = {Y | rank(Y ) = rank(X)}
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Identification

Lemma 3 ( L. (2020), extended from Lewis and Zhang (2013))
Assume f ∈ C1 and Ψ convex and partly smooth at a point x∗ relative to Mx∗ . If
1 The nondegenerate condition holds

0 ∈ relint (∂F (x∗)) = ∇f(x∗) + relint (∂Ψ(x∗)) (NOD)

2 xt → x∗, and
3 F (xt)→ F (x∗),
then

dist
(
0, ∂F (xt)

)
→ 0 ⇔ xt ∈Mx∗ for all t large.
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Motivating Example: Structured Sparsity

Structured neural networks: condense gigantic deep learning models, for smaller memory
footprint, deploying on mobile devices, faster prediction

Especially important because overparameterization is widely used for easier training

Main approach: sparsify to get fewer model variables to store, and hopefully fewer
computation

Want to trim out neurons (in fully-connected layers) or a whole convolutional kernel, but
not just individual weights, to really reduce model size and accelerate prediction (GPUs
are fast only when handling dense matrices/tensors)

Such patterned sparsity is called structured sparsity
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Variance Reduction

Variance reduction can help to achieve the zero minimum-norm subgradient condition

But variance reduction that utilizes the finite-sum structure of ERM does not work for
deep learning (Defazio and Bottou, 2019) because of data augmentation, which
transform the objective to the expectation of a loss function over distributions

Most algorithms with variance reduction in infinite-sum settings require more
computation (for better convergence rates) – not ideal for time-consuming deep learning
problems

Our proposal (Huang and L., 2022): regularized modernized dual averaging (RMDA),
inspired by RDA (Xiao, 2010; Lee and Wright, 2012) and MDA (Jelassi and Defazio,
2020)
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Problem Formulation and Algorithm Idea

Consider the following regularized optimization problem:

min
x

F (x) := Eξ∼D [fξ (x)] + ψ (x)

D is a distribution

fξ is differentiable with Lipschitz gradient almost everywhere for all ξ ∈ Ω

f := Eξ∼D [fξ (x)] is the expected loss (over all possible data augmentations)
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Algorithm
Algorithm 1: RMDA (x0, T, η(·), c(·))

input : Initial point x0, step size schedule η(·), momentum schedule function c(·),
number of epochs T

V0 ← 0, α0 ← 0
for t = 1, . . . , T do

βt ←
√
t, st ← η(t)βt, αt ← αt−1 + st

Sample ξt ∼ D and compute Gt ← ∇fξt(xt−1)
V t ← V t−1 + stG

t // dual (weighted) averaging
x̃t ← argminx 〈V

t

αt
, x〉+ βt

2αt
‖x− x0‖2 + ψ(x) // proximal operation

xt ← (1− c(t))xt−1 + c(t)x̃t // momentum
output : The final model xT

Multi-stage step sizes; restart Vt and αt whenever the stepsize changes

increase c(t) by the same proportion we decrease η(t), but capped by c(t) = 1:
following the empirical observation of Jelassi and Defazio (2020)
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Theoretical Guarantees

Summary of theoretical results (details omitted, not the point here):
(Variance reduction) As long as the iterates eventually move slow enough, the averaged
stochastic gradient α−1

t Vt converges to the real gradient ∇f(xt−1) almost surely

(Stationarity) If the iterates converge to a point, this point is stationary almost surely

(Manifold identification) When the first two items and (NOD) hold, the optimal
manifold at x∗ is identified within finite steps almost surely
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Experiment of Structured Sparsity using Group-LASSO Norm
ProxSGD (Yang et al., 2019): proximal SG+momentum
ProxSSI (Deleu and Bengio, 2021): AdamW + proximal operations
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Algorithm Test accuracy Structured sparsity Test accuracy Structured sparsity
VGG19/CIFAR10 VGG19/CIFAR100

ProxSGD 92.4 ± 0.3% 72.6 ± 6.0% 71.9 ± 0.1% 8.6 ± 4.9%
ProxSSI 92.5 ± 0.0% 81.1 ± 0.2% 66.2 ± 0.4% 46.4 ± 1.4%
RMDA 93.6 ± 0.2% 86.4 ± 0.3% 72.2 ± 0.2% 58.9 ± 0.4%

ResNet50/CIFAR10 ResNet50/CIFAR100
ProxSGD 92.4 ± 0.1% 76.8 ± 4.1% 75.5 ± 0.5% 51.8 ± 0.3%
ProxSSI 94.1 ± 0.1% 74.8 ± 1.3% 74.5 ± 0.3% 32.8 ± 2.5%
RMDA 94.3 ± 0.0% 83.0 ± 0.5% 76.1 ± 0.5% 57.7 ± 3.8%

Might take much more iterations to reach the ideal structure than to reach the ideal
prediction accuracy (structured sparsity of RMDA on ResNet50 was still steadily increasing
near the final epochs, so it could get even better with more iterations)
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Regularized Optimization Problem

Recall (REG)
min
x

F (x) := f(x) + Ψ(x), (REG)

∇f Lipschitz continuous, Ψ : Rn → R: convex and partly smooth

F is lower-bounded and the solution set Ω is non-empty
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Inexact Successive Quadratic Approximation (ISQA)

At the tth iteration, with iterate xt, ISQA finds an update direction pt by solving

pt ≈ argmin
p∈Rn

Qxt

Ht

(
p;xt

)
:= ∇f

(
xt
)>
d+1

2d
>Htd+Ψ

(
xt + d

)
−Ψ

(
xt
)

(SUBPROB)

for some symmetric and positive-semidefinite Ht.
A stepsize αt along pt is then decided for updating the iterate

Many existing algorithms included in this framework: proximal Newton (PN) when
Ht = ∇2f(xt), proximal quasi-Newton (PQN), proximal gradient, and so on

Subproblem has no closed-form solution when Ht is not diagonal: apply an iterative
solver to obtain an approximate solution

abbreviation: Qt(p) := Qxt

Ht
(p;xt)
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Solution Inexactness

For PN and PQN, under suitable conditions, superlinear convergence in the number of
times updating xt can be obtained

Similar to the smooth case (i.e. Ψ ≡ 0): requires increasing solution accuracy of
(SUBPROB)

Unlike the smooth case: no closed-form or finite-termination solver (direct
inverse/matrix factorization/conjugate gradient) exists for (SUBPROB)

Superlinear convergence only in theory and in outer iterations, but not observed in real
running time
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Possible Remedy and Further Difficulties

If Ψ is partly smooth around a point x∗, and the iterates converge to x∗, then after
identifying the optimal manifold Mx∗ 3 x∗, we can switch to smooth optimization

Low per-iteration cost from the low dimensionality of the manifold

Finite termination in subproblem solving from smoothness

If (SUBPROB) is always solved exactly and αt ≡ 1, it is known that the optimal
manifold can be identified, as long as the iterates converge to x∗ (Hare, 2011)

But due to the inexactness in the approximate subproblem solution, iterates of ISQA
without further conditions in general do not identify the optimal manifold (Example 1)

Numerical experience is the opposite: ISQA can identify the active manifold in practice

Analyze this and propose acceleration in L. (2020)
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Algorithm Details
Choice of Ht: bounded and positive-definite

∃M,m > 0, such that M � Ht � m, ∀t ≥ 0. (BD+PD)

Inexact solution: need Qt(pt) < Qt(0) = 0, and consider (choice of εt in next page)

Qt(pt)−min
p
Qt(p) ≤ εt (OBJ)

Step size: given γ ∈ (0, 1) find αt such that the objective decrease is sufficiently large

F (xt + αtp
t) ≤ F (xt) + αtγQt(pt) (Armijo)

Algorithm 2: Framework of ISQA

input : x0, γ, β ∈ (0, 1)
for t = 0, 1, . . . do

αt ← 1, pick εt ≥ 0 and Ht, and solve (SUBPROB) for pt satisfying (OBJ)
while (Armijo) not satisfied do αt ← βαt
xt+1 ← xt + αtp

t
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Identification from Subproblem Solver I

pt∗ denotes the optimal solution to (SUBPROB) and Q∗t := Qt(pt∗)

Consider relative precision in (OBJ) for easier analysis:

∃η ∈ [0, 1) : εt = η (Qt(0)−Q∗t ) = −ηQ∗t , ∀t
⇒ Qt(pt) ≤ (1− η)Q∗t .

(Relative)

Existence of η easily satisfied by applying a Q-linear-convergent solver to (SUBPROB)
for a fixed number of iterations due to (BD+PD) (enforcing a certain η needs explicit
knowledge of upper and lower bounds of Ht)

Define the generalized proximal mapping: for any function g, τ ≥ 0, and Λ PD,

proxΛ
τg(x) := argmin

y

1
2〈x− y, Λ(x− y)〉+ τg (y)
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Identification from Subproblem Solver II
Theorem 4 (L. (2020))
Assume (Relative) for η ∈ [0, 1) and (NOD) holds. If the update direction pt satisfies

xt + pt = proxΛt
Ψ

(
yt − Λ−1

t

(
∇f

(
xt
)

+Ht

(
yt − xt

)
+ st

))
, (Prox)

with
Λt symmetric and PD, M1 ≥ ‖Λt‖ for M1 > 0,

‖yt − (xt + pt∗)‖ decreases to 0 with |Q∗t |, and

‖st‖ decreases to 0 with ‖yt − (xt + pt∗)‖
then there are ε, δ > 0 such that:
1 ‖xt − x∗‖ ≤ δ,
2 |Q∗t | ≤ ε, and
3 αt = 1
imply xt+1 ∈Mx∗ .
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Applicable Subproblem Solvers

|Q∗t | → 0 for ISQA under (BD+PD) and (Relative) is known (L. and Wright, 2019)
Almost all popular subproblem solvers satisfy such conditions: including, but not limited
to
- Proximal gradient (PG)

- Accelerated PG (APG)

- Variance reduction methods like Prox-SAGA/SVRG

- Proximal (cyclic) block-coordinate descent (CD)

Almost all general-purpose solvers used in practice, so ISQA essentially achieves
manifold identification
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Iterate Convergence Under a Growth Condition

We at least need a convergent subsequence of iterates to get to a neighborhood of x∗

Solution set might be unbounded, so might not have a convergent subsequence

First-order methods have some implicit regularization so convexity alone is sufficient for
ensuring a bounded iterate sequence, but not the case for other methods like ISQA

Assume F satisfy the following growth condition for some ζ, ξ > 0, and θ ∈ (0, 1]:

ζdist(x,Ω) ≤
(
F (x)−min

x
F (x)

)θ
, ∀x ∈

{
x | F (x)−min

x
F (x) ≤ ξ

}
(GROWTH)

Special cases: quadratic growth (θ = 1/2), weak sharp minima (θ = 1)

Cannot use the framework of Attouch et al. (2013) due to the inexactness in subproblem
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Iterate Convergence Under (GROWTH)

Lemma 5 (L. (2020))
Assume f is convex, ∇f is Lipschitz continuous, and (GROWTH) holds locally. Then
1 For θ ∈ [1/2, 1]: δt := F (xt)−minx F (x) converges to 0 Q-linearly.
2 For θ ∈ (0, 1/2), δt = O(t−1/(1−2θ))

Theorem 6 (L. (2020))
For θ ∈ (1/4, 1], xt → x∗ for some x∗ ∈ Ω.

Recently found that some cases already imply finding an optimum: (preprint with Steve
coming soon)

Theorem 7
for θ > 1/2, an optimal solution is found within finite iterations.
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Manifold Identification in Practice

Theory suggests to force αt = 1: enlarge Ht and re-solve when (Armijo) fails with
αt = 1

x∗ and Mx∗ unknown a priori, so cannot be certain whether Mx∗ has been identified

Solution: if xt stays in the same manifold for sufficiently many consecutive iterations,
likely we have found Mx∗

Still need safeguards: what if the current one is still wrong?

Alternate between PG (directly on the original problem) and smooth optimization (PG is
generally much cheaper than ISQA in terms of per iteration cost)
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Accelerated Algorithm from Solution Structure Utilization
The proposed algorithm ISQA+:

ISQA stage:
1 Solve (SUBPROB)
2 If xt stays within the same manifold for T iterations: switch to the smooth stage

Smooth stage:
1 One iteration of Newton within the current manifold
2 One iteration of PG
3 If the manifold changes after PG, or the smooth step fails to decrease the objective, go

back to the ISQA stage
Superlinear convergence in outer iterations follows from that of Newton, and in running
time because the subproblem can be solved to optimality in finite time

With proper damping, just need a Hölderian error bound to get superlinear convergence
(assumption of strong convexity or PD of Hessian on Mx∗ not needed)
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Experiment Setting

`1-regularized logistic regression: domain Rd,

Ψ(x) = λ‖x‖1, f(x) =
n∑
i=1

log (1 + exp (−bi〈ai, x〉)) ,

(λ = 1 in the experiments)
Algorithms to compare:
- LHAC (Scheinberg and Tang, 2016): an inexact proximal quasi-Newton (L-BFGS) method

with CD for the subproblem

- NewGLMNET (Yuan et al., 2012): a line-search Proximal Newton method with a CD
subproblem solver

- ISQA+-LBFGS and ISQA+-Newton: our algorithm with the first stage using L-BFGS
(similar to LHAC) and real Hessian (similar to NewGLMNET) for Ht, respectively
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Relative Objective Value = current objective value− optimal objective value
optimal objective value .
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Nuclear-norm Regularized Optimization
Consider

min
X∈Rm×n

F (X) := f (X) + λ‖X‖∗, (Matrix-Completion)

with f convex, ∇f L-Lipschitz continuous, and λ > 0
Properties of the nuclear norm (Lewis and Overton, 1996):
- `1 norm applied to the singular values

- Promotes sparsity in the singular values: leading to low-rank solutions

- Proximal operation can be conducted in closed-form

The problem itself looks very simple: convex regularized optimization, a smooth term
and an “easy-to-compute” term with a closed-form proximal operator
Difficulties:
- m and n can be really large in modern applications: may be unable to explicitly compute

and store the whole X in the memory, so exact SVD is not that easy

- SVD is also very expensive in this case
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Matrix Factorization

Another way to compute the nuclear norm(Rennie and Srebro, 2005):

2‖X‖∗ = min
W,H:WH>=X

‖W‖2
F + ‖H‖2

F (Nuclear-Frobenius)

A natural idea to solve (Matrix-Completion) is then to explicitly write down the
decomposition for a given rank k: BM decomposition (Burer and Monteiro, 2003)

min
W∈Rm×k,H∈Rn×k

F (W,H) := f
(
WH>

)
+ λ

2
(
‖W‖2

F + ‖H‖2
F

)
.

(Matrix-Factorization)

Also known as matrix factorization in the machine learning community

If k is sufficiently large, (Matrix-Factorization) is equivalent to (Matrix-Completion) in
the sense that any global solution of one can be converted to that of the other

For k small, per-iteration cost is also low
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Advantages and Disadvantages of Matrix Factorization

Advantages
- Avoiding expensive SVDs

- Smooth objective

- Low cost in matrix storage and multiplication: we can store the whole W and H directly

Disadvantages
- Need to pre-specify k: extra work for parameter tuning

- Problem nonconvex: possible to get stuck at saddle points or spurious local optima

- Exist cases with spurious local minima (Yalcin et al., 2022; O’Carroll et al., 2022)
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Combining the best of the two Worlds

Manifold identification: nuclear norm is partly smooth, with the manifold being
MX := {Y | rank(Y ) = rank(X)}

The convex formulation thus provides information with the right rank

Solving the convex formulation also guarantees convergence to the global optimum (in
objective value)

We can switch between the two formulations whenever needed (given the SVD of X)

Our approach in L. et al. (2022): go with (Matrix-Factorization), and whenever the
algorithm seems to converge (when the gradient is small), switch to
(Matrix-Completion) to escape spurious stationary points and adjust rank

Acceleration not from high order methods, but from low iteration cost and parallelism
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Inexact Proximal Gradient for (Matrix-Completion)
Given current iterate X, Lipschitz constant L (just need a loose upper bound), update
direction obtained by:

∆X ≈ argmin
D∈Rm×n

(
QX(D) := 〈∇f(X), D〉+ L

2 ‖D‖
2
F + λ‖X +D‖∗

)
⇔ X + ∆X ≈ proxL−1λ‖·‖∗

(
X − L−1∇f(X)

)
Proximal operation through approximate SVD by power method with warmstart using
the current iterate (no strict decrease guarantee)

Z := X − L−1∇f(X), X + ∆X ∈
{
Y | min

g∈∂QX(Y )
‖g‖ ≤ ε

}
. (Inexact–Subgrad)

Exact proximal on inexact SVD: εt depends on precision of SVD

X + ∆X = proxαλ‖·‖∗ (Z + Et) , ‖Et‖ ≤ εt

The iterate is then updated by

X+ = X + ∆X.
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Algorithm

Algorithm 2: Algorithm Framework of MF-Global

input : λ > 0, k ∈ N, nonnegative sequences {εt}, W̃0 ∈ Rm×k, H̃0 ∈ Rn×k

for t = 0, . . . do
MF Stage: Compute (Wt, Ht) as an approximate solution to
(Matrix-Factorization) with rank = k (starting from (W̃t, H̃t)) satisfying
F (Wt, Ht) ≤ F (W̃tH̃

>
t ).

MC Stage: Start from X̃t = WtH
>
t , solve (Matrix-Completion) by one step of

inexact proximal gradient to get Xt+1 satisfying (Inexact–Subgrad), and let
Ut, S

t, Vt be SVD of Xt+1 (available from the PG step)
k ← rank(St)
W̃t+1 ← Ut

√
St, H̃t+1 ← Vt

√
St

Xt or X̃t never formed explicitly, access through matrix-matrix products
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Theorem 8 (L. et al. (2022))
Assume f is lower bounded. If ∑ ε2t <∞, then
1 dist(Xt,Ω)→ 0 (Ω: solution set), F (xt)→ F ∗ := minX F (X)
2 {Xt} has at least one limit point, and any limit point is a global solution of

(Matrix-Completion)

Theorem 9
If εt = O(t−2), then F (Xt)− F ∗ = O(t−1)

Difficulty: objective not strictly decreasing, and the alternative step destroys geometry
properties of PG

Theorem 10 (L. et al. (2022))
If εt → 0, Xti → X∗ ∈ Ω, and (NOD) holds at X∗, then there is i0 such that

rank(Xti) = rank(X∗), ∀i ≥ i0.
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Numerical Results

Compare with the state of the art for (Matrix-Completion) using 8 cores:
Active-ALT (Hsieh and Olsen, 2014): alternates between inexact PG and solving a
lower-dimensional convex subproblem. Power method with warmstart for SVD

AIS-Impute (Yao et al., 2018): Inexact APG method and the same power method for
approximate SVD.
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Figure: Top row: relative objective value. Bottom row: relative RMSE (time in log scale).

Data set m n λ final k
movielens100k 943 1682 15 68
movielens10m 65133 71567 100 50
netflix 17770 2649429 300 68
yahoo-music 624961 1000990 10000 52
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Comparison with a Solver for (Matrix-Factorization)

Compare with running our subroutine for (Matrix-Factorization) only (PolyMF-SS,
Wang et al., 2017) without convex steps, with optimal rank given to PolyMF-SS from
the beginning on
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MF-Global escapes spurious stationary points
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Degeneracy

If we don’t have any nondegeneracy condition, it is possible that the active manifold is
not unique

Iterates might jump among manifolds in this case

But (hopefully) we can still use that to make the problem less difficult and get some
partial acceleration
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Best Subset Selection
Consider

min
x∈As

f(x), (SUBSET)

where f has Lipschitz continuous gradient, s ∈ N, and As is the sparsity set given by
As := {x ∈ Rn : ‖x‖0 ≤ s}

Nonconvex regularization
Combinatorial nature:
As =

⋃
J∈Js

AJ , AJ := span{ej : j ∈ J}, Js := {J ⊆ {1, 2, . . . , n} : |J | ≤ s} ,

with ej being the jth standard unit vector in Rn.
Finite pieces of AJ , each is a subspace
Use this idea to accelerate proximal gradient (non-unique projection, use arbitrary
element)

wk+1 ∈ T λPG(wk) := PAs(wk − λ∇f(wk)) (PG)
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Theorem 11 (Alcantara and L. (2022))
Let {xk} be a sequence generated by (PG) with λ ∈ (0, L−1). Then the following hold:

(a) (Subsequential convergence) {f(wk)} is strictly decreasing, and limit point w∗ of {wk}
is a stationary point of (SUBSET): w∗ ∈ PAs(w∗ − λ∇f(w∗))

(b) (Subspace identification and full convergence) There exists N ∈ N such that

{wk}∞k=N ⊆
⋃

J∈Iw∗

AJ , Iw∗ := {J ∈ Js : w∗ ∈ AJ}. (Non-Unique-Identification)

whenever wk → w∗. In particular, if T λPG(w∗) is a singleton for an limit point w∗ of
{wk}, then wk → w∗, and hence (Non-Unique-Identification) holds.

(c) (Local linear convergence) If T λPG(w∗) is a singleton and w 7→ w − λ∇f(w) is a
contraction over AJ for all J ∈ Iw∗ , then {wk} converges to w∗ at a Q-linear rate.
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Two Acceleration Schemes

The “identified” subspace might not be unique, but whichever we get always contains w∗

Use (Non-Unique-Identification) to propose two acceleration schemes, both with faster
convergence rates under suitable conditions
1 Extrapolation like APG, but only when two consecutive iterates lie in the same AJ : prefer

the current piece when there are multiple choices
2 Switch to a smooth method if the piece is fixed: could get superlinear/quadratic

convergence as before
Actually can still get superlinear/quadratic convergence even if the iterates jump among
different J ∈ Iw∗
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Experiments
Compare:
- PG

- APG: Our same-piece extrapolation acceleration

- APG+: plus the smooth optimization part (with Newton’s method)

Consider the residual as the problem is nonconvex:

Residual(x) := ‖x− PAs (x− λ∇f (w))‖
1 + ‖x‖+ λ‖∇f (x)‖

Dataset problem #instances (m) #features (n)
news20 Logistic regression 15,997 1,355,191
rcv1.binary Logistic regression 20,242 47,236
webspam Logistic regression 280,000 16,609,143
E2006-log1p Least square 16,087 4,272,227
E2006-tfidf Least square 16,087 150,360

LEE Ching-pei Solution Structure for Efficient Optimization 44 / 45



Logistic regression

0 5 10
Time (s)

10-8

10-6

10-4

10-2

100
R

es
id

ua
l

PG
APG
APG+

() news20, s = 0.01m

0 0.2 0.4 0.6 0.8 1
Time (s)

10-8

10-6

10-4

10-2

100

R
es

id
ua

l

PG
APG
APG+

() rcv1.binary, s = 0.01m

0 200 400 600
Time (s)

10-6

10-4

10-2

100

R
es

id
ua

l

PG
APG
APG+

() webspam, s = 0.001m

Least square

0 10 20 30 40 50
Time (s)

10-6

10-4

10-2

R
es

id
ua

l

PG
APG
APG+

() E2006-log1p, s = 0.01m

0 0.5 1 1.5 2 2.5 3
Time (s)

10-8

10-6

10-4

10-2

100

R
es

id
ua

l

PG
APG
APG+

() E2006-tfidf, s = 0.01m

LEE Ching-pei Solution Structure for Efficient Optimization 45 / 45



Thanks for Listening

Questions?
C. L. Accelerating inexact successive quadratic approximation for regularized
optimization through manifold identification, 2020. Accepted by Mathematical
Programming

Zih-Syuan Huang and C. L. Training structured neural networks through manifold
identification and variance reduction. In ICLR, 2022

C. L., Ling Liang, Tianyun Tang, and Kim-Chuan Toh. Escaping spurious local minima
of low-rank matrix factorization through convex lifting, 2022. arXiv:2204.14067

Jan Harold Alcantara and C. L. Accelerated projected gradient algorithms for sparsity
constrained optimization problems. In NeurIPS, 2022


	Preliminaries
	Structured Neural Network Models
	Inexact Subproblem Solution, Essential Manifold Identification, and Acceleration
	Low-rank Matrix Completion
	Best Subset Selection

