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Problem Setting

Consider the following generalized equation problem:

find x ∈ H such that 0 ∈ (A+B)(x), (GE)

I H is a Hilbert space: inner product 〈·, ·〉 and induced norm ‖·‖

I A,B : H⇒ 2H

I B maximal monotone

I Assume that the solution set Ω to (GE) is non-empty.

I A single-valued and continuous everywhere, and locally Lipschitz
continuous in a neighborhood U of Ω:

∃L ≥ 0 : ‖A(x)−A(y)‖ ≤ L‖x− y‖, ∀x, y ∈ U.
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Regularized Optimization

A more approachable special case we will separately discuss in detail is
regularized optimization:

min
x∈H

F (x) := f(x) + Ψ(x), (Reg-Opt)

I f continuously differentiable with ∇f Lipschitz continuous

I Ψ : H → [−∞,∞] convex, proper, and closed

I Namely, A = ∇f,B = ∂Ψ in (GE)
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Newton’s Method

I For (GE), if A ∈ C1, ∇A is Lipschitz continuous, B ≡ 0, 0 ∈ A(x∗),
∇A(x∗) is nonsingular, the iterates {xt} converge to x∗, Newton’s
method

pt := ∇A(xt)
−1A(xt), xt+1 = xt + pt

ensures quadratic convergence to x∗ when we are close enough to it:

‖xt+1 − x∗‖ = O
(
‖xt − x∗‖2

)
and quadratic convergence of the residual to 0:

‖A(xt+1)‖ = O
(
‖A(xt)‖2

)
I For large-scale problems such that inverting the Jacobian is too costly,

we use iterative methods to obtain truncated Newton directions:
pt ≈ (∇A(xt))

−1A(xt) instead

I With suitable stopping conditions for the iterative method, the same
convergence rates can be retained
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Proximal Newton for (Reg-Opt)

I For smooth optimization, namely (Reg-Opt) with Ψ ≡ 0, the (truncated)
Newton direction can be seen as

pt ≈ argmin
p∈H

〈∇f(xt), p〉+
1

2
〈p, ∇2f(xt)p〉.

I Thus a natural way to extend Newton’s method to the regularized
setting in which Ψ 6= 0 is to solve

pt ≈ argmin
p∈H

〈∇f(xt), p〉+
1

2
〈p, ∇2f(xt)p〉+ Ψ(xt + p).

I Lee et al. (2014)1: If f ∈ C2 is strongly convex and ∇2f is Lipschitz
continuous, we still get quadratic convergence for ‖xt − x∗‖

I We can generalize this approach back to (GE)

xt+1 ≈ (∇A(xt) +B)−1 (∇A(xt)−A) (xt),

and similar local convergence results can be easily obtained

1Jason D. Lee, Yuekai Sun, and Michael A. Saunders. Proximal Newton-type methods
for minimizing composite functions.
SIAM Journal on Optimization, 24(3):1420–1443, 2014
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Questions to Ask

I What if ∇A is singular and Ω is not a singleton?

I Is differentiability of A really needed? Does semismooth Newton still
work in this setting (nondifferentiable A and a possibly singular
generalized Jacobian ∂A, further together with the additional set-valued
B term)?

I If we only have either nondifferentiability of A or singularity of ∇A, the
problem should not be too difficult, but the combination of these two
degeneracy conditions makes the situation more complicated
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This Talk I

I Not requiring A to be differentiable, not requiring its (Clarke)
generalized Jacobian to be nonsingular, allowing Ω to be an unbounded
set (so not assuming iterates converging to a point)

I Using a damping strategy, we get superlinear convergence of inexact
forward-backward-semismooth-Newton for (GE) for both dist(xt,Ω) and
the residual

r(x) :=
∥∥x− (Id +B)−1(Id−A)x

∥∥, (Forward-Backward Residual)

(which is 0 iff 0 ∈ (A+B)x and is continuous), where Id is the identity
operator, under a Hölderian error bound condition: there are κ, q > 0
such that

dist (x,Ω) = dist
(
x, (A+B)−1 (0)

)
≤ κr(x)q, (HEB)

for all x in a neighborhood U of Ω (Q-superlinear convergence can be
guaranteed for q > (−1 +

√
33)/8)
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This Talk II

I For (Reg-Opt), we futher obtain finite termination for q > 1

I For (Reg-Opt), we also propose a globally convergent (only need
convexity of f and Ψ) algorithm that possesses all the local properties
above (need (HEB)), and ensures that F (xt) is strictly decreasing and
also converges Q-superlinearly to F ∗ := minx∈H F (x), without needing
f to be twice-differentiable
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Motivations

I To deal with nondifferentiable A:

- Define ∂A(x) as the (Clarke) generalized Jacobian of A at x, which is
well-defined in U as A is locally Lipschitz continuous

- Take any element from ∂A(x), abuse the notation to still call it ∇A(x)

I To deal with possible singularity of ∇A:

- Add a damping term that vanishes as we approach Ω: we do not know Ω a
priori, so need to rely on (Forward-Backward Residual)

I As the solution is inexact, also allow approximation of ∇A(x)
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Algorithm

I Given the current iterate xt, we update the iterate by

xt+1 ≈ (Ht +B)−1 (Ht −A) (xt), Ht := (µtId + Jt) , µt := cr (xt)
ρ ,

(Proximal semismooth Newton)
for some given c > 0, ρ ≥ 0

I Jt is a positive semidefinite linear operator with
∃∇A(xt) ∈ ∂A(xt) such that ‖Jt −∇A(xt)‖ = O

(
r (xt)

θ
)
, for θ ∈ [ρ, 1]

(only need A maximal monotone around points with r(x) = 0)

I The resolvent (Id +B)−1 of B is single-valued and well-defined, and
hence so is (Ht +B)−1 as Jt is positive semidefinite.

I For the approximate solution, consider the following criterion with ν ≥ 0:

rt(xt+1) :=
∥∥∥xt+1 − (Id +B)−1 ((Ht −A) (xt)− (Ht − Id) (xt+1))

∥∥∥
≤ νr(xt)1+ρ (Stop)

rt(xt+1): forward-backward residual of (Proximal semismooth Newton),
so it is 0 when xt+1 is an exact solution of that subproblem
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Semismoothness

I It is known that when B ≡ 0, semismooth Newton that uses arbitrary
elements of the generalized Jacobian can achieve superlinear convergence
if ∇A(x) is nonsingular at the point of convergence

Definition 1 (Semismooth)

A is semismooth of order p at x if it is directionally differentiable at x, and
for any ∇A(x+ ∆x) ∈ ∂(A(x+ ∆x)) with ∆x→ 0,

A(x+ ∆x)−A(x)− (∇A(x+ ∆x)) ∆x = O
(
‖∆x‖1+p

)
.

When p = 1, it is called strongly semismooth.

I A generalization of A differentiable with ∇A Hölder continuous of order
p
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Local Convergence

Theorem 2

Consider solving (GE) using (Proximal semismooth Newton) and (Stop),
with A single-valued and continuous, B maximal monotone, and Ω 6= 0.
Assume (HEB) holds for some q > 0 in a neighborhood V of Ω and A is
locally Lipschitz continuous and semismooth of order p for some p ∈ (0, 1]
within the same neighborhood. If the following inequalities are satisfied:

(1 + ρ)q > 1,

(1 + p)q > 1,(
1 + p− ρ

q

)
(1 + p)q > 1,

(Cond-Q)

we obtain Q-superlinear convergence in V with the form

r (xt+1) = O (r(xt)
s) ,dist (xt+1,Ω) = O (dist (xt,Ω)s) ,

s := min

{
(1 + ρ)q, (1 + p)q,

(
1 + p− ρ

q

)
(1 + p)q

}
.
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Corollary 3

Consider the setting of Theorem 2. If instead of (Cond-Q), the following
inequalities hold: 

(1 + p)q > 1,(
1 + p− ρ

q

)
(1 + p)q > 1,

ρ+ q > 1,

ρ > 0,

(Cond-R)

then we obtain Q-superlinear convergence within V for {r(xt)} of the form

r(xt+1) = O
(
r(xt)

1+s2
)
,

where

s2 := min
{

(1 + p)q,
(

1 + p− ρ

q

)
(1 + p)q, ρ+ q, 1 + ρ

}
− 1 > 0,

and R-superlinear convergence within V for {dist(xt,Ω)}:
limt→∞ dist(xt,Ω)

1
t = 0. 12



Theorem 4

If the conditions in either Theorem 2 or Corollary 3 hold true and that the
initial point x0 is close enough to Ω, then xt → x∗ strongly for some
x∗ ∈ Ω.2

2Note that we are considering Hilbert spaces.
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Implications

(Cond-Q): (1 + ρ)q > 1, (1 + p)q > 1,
(

1 + p− ρ
q

)
(1 + p)q > 1

I q > 1: might get faster-than-quadratic rates; also ok to have
p = 0, ρ = 0: constant damping but still with superlinear convergence

I Quadratic convergence: happens if p = ρ = q = 1, namely the case of
the ordinary error bound plus strongly semismooth A.

I If p = 1 and q ≤ 1, the condition becomes

q >
1

2
, 2q − 1

2
> ρ, q >

−1 +
√

33

8
.

In particular, we can set ρ = 2(−1 +
√

33)/8− 1/2 =
(
−3 +

√
33
)
/4 to

allow the widest range of q.

I If q = 1, then p ≥ ρ > 0 implies superlinear convergence.

(Cond-R): (1 + p)q > 1,
(

1 + p− ρ
q

)
(1 + p)q > 1, ρ+ q > 1, ρ > 0

I When p = 1: superlinear convergence only requires q > 1/2 and ρ = 1/2

I Weaker than (Cond-Q) when q ≤ 1, but stronger when q > 1 14
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Equivalence Between (HEB) and Sharpness

For (Reg-Opt), when f and Ψ are both convex, actually

dist(x,Ω) ≤ r(x)q

is equivalent to

F (x)− F ∗ ≥ κ2dist(x,Ω)
1+ 1

q (Sharpness)

for some κ2 > 0. This relates the objective distance and the iterate
distance to the solutions
I q > 1 only possible when Ψ 6= 0

I For q =∞, (Sharpness) is the so-called weak-sharp minima, and it is
known that for problems with such a property, a solution in Ω can be
obtained in a finite number of iterations for a wide range of algorithms

I We get a finite termination result for a broader range (q > 1) of
problems and a very broad class of algorithms, and semismoothness is
not needed in this result
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Finite Termination

Theorem 5

Consider (Reg-Opt) with F satisfying (HEB) for some q > 1 and some
κ > 0. If f and Ψ are both convex, then any algorithm guaranteeing

lim inf
t→∞

r(xt) = 0 (1)

ensures that there is some t0 <∞ such that r(xt0) = 0 and hence xt0 ∈ Ω.

I Any convergent algorithm (such that a limit point of its iterates is a
solution) attains finite termination in this case
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Issues of Existing Approaches

I For globalization for (Reg-Opt), the approximate solution to the
subproblem is called x̂t+1, which is just a candidate for the next iterate

I Some line search for ensuring global convergence

I Use a modified version of (Stop) to get descent directions:

qt(x̂t+1) ≤ qt(xt), rt(x̂t+1) ≤ νr(xt)1+ρ, (Stop’)
where rt(·) is the residual of the subproblem, and

qt(x) := 〈∇f(xt), x− xt〉+
1

2
〈Jt (x− xt) , x− xt〉+ Ψ (x)

I Yue et al. (2019):3 backtracking from αt = 1 until

F (xt + αt(x̂t+1 − xt)) ≤ F (xt)− γαt‖x̂t+1 − xt‖2
- Requires Lipschitzian ∇2f (to use Taylor expansion for sufficient decrease)

- Does not guarantee unit step size acceptance when q = ρ = 1

- Only considered (Reg-Opt) and got superlinear convergence only for q = 1

3Man-Chung Yue, Zirui Zhou, and Anthony Man-Cho So. A family of inexact SQA
methods for non-smooth convex minimization with provable convergence guarantees
based on the Luo–Tseng error bound property.
Mathematical Programming, 174(1-2):327–358, 2019
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I Mordukhovich et al. (2022):4 accept unit step size when r(x) decreases
at a prespecified linear rate; otherwise backtracking above

- Again need ∇2f Lipschitz continuous, and only consider (Reg-Opt)

- Guarantee unit step size eventually accepted if local superlinear convergence
is present, but objective value might not be strictly decreasing

- Prove Q-superlinear convergence for r(xt) and R-superlinear convergence for
dist(xt,Ω) with conditions the same as (Cond-R)

- Earlier preprint proved Q-superlinear convergence for both r(xt) and
dist(xt,Ω) for q > (−1 +

√
5)/2 ≈ 0.618 with suitable ρ (ours is

q > (−1 +
√

33)/8 ≈ 0.593)

- Convergence faster than quadratic for q > 1 (we have seen that actually it is
finite termination)

4Boris S. Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally
convergent proximal Newton-type method in nonsmooth convex optimization.
Mathematical Programming, 2022.
Online first. The first version appears at arXiv:2011.08166v1 with some slightly different
results
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Our Algorithm

Algorithm 1: A Proximal-Newton Method Guaranteeing Strict Decrease
and Superlinear Convergence for the Objective Value

input : x0 ∈ H, β, γ ∈ (0, 1), ν ∈ [0, 1), c > 0, δ ≥ 0
Compute an upper bound L for the Lipschitz constant of ∇f
ρ← 1
for t = 0, 1, . . . do

Find an approximate solution x̂t+1 of the subproblem satisfying
(Stop’)
αt ← 1, pt ← x̂t+1 − xt
while True do

yt+1(αt)← xt + αtpt
x̄t+1(αt)← proxΨ/L (yt+1(αt)−∇f(yt+1(αt))/L)

if F (x̄t+1(αt)) ≤ F (xt)− γα2
t ‖pt‖

2+δ then
xt+1 ← x̄t+1(αt)
Break

else αt ← βαt
19



Global Convergence

Lemma 6

If f is Lipschitz-continuously differentiable (convexity not needed except for
subproblem construction, but can work around this by using PSD
approximations for the generalized Hessian) and Ψ is convex, closed, and
proper, then we have for Algorithm 1 that

lim
t→∞

r(xt) = 0.
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Unit Step Size Acceptance and Superlinear Convergence

Theorem 7

Consider Algorithm 1 with the setting of Theorem 2 satisfied and f convex.
If (Cond-Q) holds and δ is large enough such that
‖pt‖2+δ = o(dist(xt,Ω)(q+1)/q), then there is t0 ≥ 0 such that αt = 1 is
accepted for all t ≥ t0, and

dist(xt+1,Ω) = O
(
dist(xt,Ω)1+s

)
,

r(xt+1) = O
(
r(xt)

1+s
)
,

F (xt+1)− F ∗ = O
(

(F (xt+1)− F ∗)1+s
)
, ∀t ≥ t0.

I For the allowed range of Q-superlinear convergence, δ = 2 is large
enough

I The key for working around Lipschitzian Hessian is to use (Sharpness)
and the objective bound from proximal gradient to get objective change
guarantees
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Simplification for Smooth Problems

I If Ψ ≡ 0: the bound described above directly comes from convexity of f

I Don’t need another (proximal) gradient step and can keep all guarantees

Algorithm 2: A Simple semismooth Newton Method

input : x0 ∈ H, β, γ ∈ (0, 1), ν ∈ [0, 1), c > 0, ρ ∈ (0, 1], δ ≥ 0
for t = 0, 1, . . . do

Find x̂t+1 satisfying (Stop’)
pt ← x̂t+1 − xt, αt ← 1
while F (xt + αtpt) > F (xt)− γα2

t ‖pt‖
2+δ do αt ← βαt

xt+1 ← xt + αtpt

I All guarantees follow that for Algorithm 1 if Ψ ≡ 0

I If ρ = 0.5, f has Lipschitzian Hessian, and c is chosen according to the
Lipschitz constant of ∇2f : coincides with Mishchenko (2021); Doikov
and Nesterov (2021), who mainly focus on global complexity without
considering inexactness or considering when f is not twice-differentiable
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Special case: Levenberg–Marquardt Method

I Our approximation of allowing ‖Jt −∇A(xt)‖ = O
(
r (xt)

θ
)

with

θ ∈ [ρ, 1] covers the case of the Levenberg–Marquardt method when the
nonlinear equation has at least one solution

I In this case the residual converges to 0 at a fast rate, so the error of the
estimation of the Hessian using the Jacobian will satisfy this condition
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Thanks for Listening

Questions?
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