An Inexact Proximal Semismooth Newton Method with Superlinear Convergence to Degenerate Solutions Under the Hölderian Error Bound

> LEE Ching-pei Academia Sinica

Joint work with Stephen J. Wright. Talk at ICCOPT 2022 (Lehigh, Jul. 27, 2022)

<u>Outline</u>

Introduction

Algorithmic Framework

Local Superlinear Convergence for (GE)

Finite Termination when q > 1 for (Reg-Opt)

A Global Algorithm for (Reg-Opt)

Problem Setting

Consider the following generalized equation problem:

find $x \in \mathcal{H}$ such that $0 \in (A+B)(x)$, (GE)

- \blacktriangleright ${\cal H}$ is a Hilbert space: inner product $\langle\cdot,\,\cdot\rangle$ and induced norm $\|\cdot\|$
- $\blacktriangleright A, B : \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$
- B maximal monotone
- Assume that the solution set Ω to (GE) is non-empty.
- A single-valued and continuous everywhere, and locally Lipschitz continuous in a neighborhood U of Ω:

$$\exists L \ge 0: \quad \|A(x) - A(y)\| \le L \|x - y\|, \quad \forall x, y \in U.$$

A more approachable special case we will separately discuss in detail is regularized optimization:

$$\min_{x \in \mathcal{H}} \quad F(x) \coloneqq f(x) + \Psi(x), \tag{Reg-Opt}$$

- f continuously differentiable with ∇f Lipschitz continuous
- $\Psi: \mathcal{H} \to [-\infty,\infty]$ convex, proper, and closed
- Namely, $A = \nabla f, B = \partial \Psi$ in (GE)

Newton's Method

▶ For (GE), if $A \in C^1$, ∇A is Lipschitz continuous, $B \equiv 0, 0 \in A(x^*)$, $\nabla A(x^*)$ is nonsingular, the iterates $\{x_t\}$ converge to x^* , Newton's method

$$p_t \coloneqq \nabla A(x_t)^{-1} A(x_t), \quad x_{t+1} = x_t + p_t$$

ensures quadratic convergence to x^* when we are close enough to it:

$$||x_{t+1} - x^*|| = O\left(||x_t - x^*||^2\right)$$

and quadratic convergence of the residual to 0:

$$||A(x_{t+1})|| = O\left(||A(x_t)||^2\right)$$

For large-scale problems such that inverting the Jacobian is too costly, we use iterative methods to obtain truncated Newton directions: $p_t \approx (\nabla A(x_t))^{-1} A(x_t)$ instead

With suitable stopping conditions for the iterative method, the same convergence rates can be retained

Proximal Newton for (Reg-Opt)

- For smooth optimization, namely (Reg-Opt) with $\Psi \equiv 0$, the (truncated) Newton direction can be seen as $p_t \approx \underset{p \in \mathcal{H}}{\operatorname{argmin}} \langle \nabla f(x_t), p \rangle + \frac{1}{2} \langle p, \nabla^2 f(x_t) p \rangle.$
- ▶ Thus a natural way to extend Newton's method to the regularized setting in which $\Psi \neq 0$ is to solve

$$p_t \approx \operatorname*{argmin}_{p \in \mathcal{H}} \langle \nabla f(x_t), p \rangle + \frac{1}{2} \langle p, \nabla^2 f(x_t) p \rangle + \Psi(x_t + p).$$

- ▶ Lee et al. (2014)¹: If $f \in C^2$ is strongly convex and $\nabla^2 f$ is Lipschitz continuous, we still get quadratic convergence for $||x_t x^*||$
- We can generalize this approach back to (GE)

$$x_{t+1} \approx (\nabla A(x_t) + B)^{-1} \left(\nabla A(x_t) - A \right)(x_t),$$

and similar local convergence results can be easily obtained

¹Jason D. Lee, Yuekai Sun, and Michael A. Saunders. Proximal Newton-type methods for minimizing composite functions. *4 SIAM Journal on Optimization*, 24(3):1420–1443, 2014

- What if ∇A is singular and Ω is not a singleton?
- Is differentiability of A really needed? Does semismooth Newton still work in this setting (nondifferentiable A and a possibly singular generalized Jacobian ∂A, further together with the additional set-valued B term)?
- If we only have either nondifferentiability of A or singularity of ∇A, the problem should not be too difficult, but the combination of these two degeneracy conditions makes the situation more complicated

<u>This Talk I</u>

- Not requiring A to be differentiable, not requiring its (Clarke) generalized Jacobian to be nonsingular, allowing Ω to be an unbounded set (so not assuming iterates converging to a point)
- Using a damping strategy, we get superlinear convergence of inexact forward-backward-semismooth-Newton for (GE) for both dist(xt, Ω) and the residual

$$r(x) \coloneqq \|x - (\mathsf{Id} + B)^{-1}(\mathsf{Id} - A)x\|, \quad \text{(Forward-Backward Residual)}$$

(which is 0 iff $0 \in (A+B)x$ and is continuous), where Id is the identity operator, under a Hölderian error bound condition: there are $\kappa, q > 0$ such that

dist
$$(x, \Omega) =$$
dist $\left(x, (A+B)^{-1}(0)\right) \le \kappa r(x)^q$, (HEB)

for all x in a neighborhood U of Ω ($Q\text{-superlinear convergence can be guaranteed for <math display="inline">q>(-1+\sqrt{33})/8)$

- For (Reg-Opt), we further obtain finite termination for q > 1
- For (Reg-Opt), we also propose a globally convergent (only need convexity of f and Ψ) algorithm that possesses all the local properties above (need (HEB)), and ensures that F(xt) is strictly decreasing and also converges Q-superlinearly to F* := min_{x∈H} F(x), without needing f to be twice-differentiable

Introduction

Algorithmic Framework

Local Superlinear Convergence for (GE)

Finite Termination when q > 1 for (Reg-Opt)

A Global Algorithm for (Reg-Opt)

Motivations

► To deal with nondifferentiable A:

- Define $\partial A(x)$ as the (Clarke) generalized Jacobian of A at x, which is well-defined in U as A is locally Lipschitz continuous
- Take any element from $\partial A(x),$ abuse the notation to still call it $\nabla A(x)$
- To deal with possible singularity of ∇A :
 - Add a damping term that vanishes as we approach Ω : we do not know Ω a priori, so need to rely on (Forward-Backward Residual)
- ▶ As the solution is inexact, also allow approximation of $\nabla A(x)$

Algorithm

• Given the current iterate x_t , we update the iterate by

 $x_{t+1} \approx (H_t + B)^{-1} (H_t - A) (x_t), H_t \coloneqq (\mu_t \mathsf{Id} + J_t), \mu_t \coloneqq cr (x_t)^{\rho},$ (Proximal semismooth Newton)
for some given $c > 0, \rho > 0$

• J_t is a positive semidefinite linear operator with $\exists \nabla A(x_t) \in \partial A(x_t)$ such that $\|J_t - \nabla A(x_t)\| = O\left(r(x_t)^{\theta}\right)$, for $\theta \in [\rho, 1]$

(only need A maximal monotone around points with r(x) = 0)

► The resolvent (Id + B)⁻¹ of B is single-valued and well-defined, and hence so is (H_t + B)⁻¹ as J_t is positive semidefinite.

► For the approximate solution, consider the following criterion with $\nu \ge 0$: $r_t(x_{t+1}) \coloneqq \left\| x_{t+1} - (\operatorname{Id} + B)^{-1} \left((H_t - A) (x_t) - (H_t - \operatorname{Id}) (x_{t+1}) \right) \right\|$ $\le \nu r(x_t)^{1+\rho}$ (Stop)

 $r_t(x_{t+1})$: forward-backward residual of (Proximal semismooth Newton), so it is 0 when x_{t+1} is an exact solution of that subproblem

Introduction

Algorithmic Framework

Local Superlinear Convergence for (GE)

Finite Termination when q > 1 for (Reg-Opt)

A Global Algorithm for (Reg-Opt)

Semismoothness

It is known that when B ≡ 0, semismooth Newton that uses arbitrary elements of the generalized Jacobian can achieve superlinear convergence if ∇A(x) is nonsingular at the point of convergence

Definition 1 (Semismooth)

A is semismooth of order p at x if it is directionally differentiable at x, and for any $\nabla A(x + \Delta x) \in \partial(A(x + \Delta x))$ with $\Delta x \to 0$,

$$A(x + \Delta x) - A(x) - (\nabla A(x + \Delta x)) \Delta x = O\left(\|\Delta x\|^{1+p} \right).$$

When p = 1, it is called strongly semismooth.

 \blacktriangleright A generalization of A differentiable with ∇A Hölder continuous of order p

Local Convergence

Theorem 2

Consider solving (GE) using (Proximal semismooth Newton) and (Stop), with A single-valued and continuous, B maximal monotone, and $\Omega \neq 0$. Assume (HEB) holds for some q > 0 in a neighborhood V of Ω and A is locally Lipschitz continuous and semismooth of order p for some $p \in (0,1]$ within the same neighborhood. If the following inequalities are satisfied:

$$\begin{cases} (1+\rho)q &> 1, \\ (1+p)q &> 1, \\ \left(1+p-\frac{\rho}{q}\right)(1+p)q &> 1, \end{cases}$$
 (Cond-Q)

we obtain Q-superlinear convergence in V with the form

$$r(x_{t+1}) = O(r(x_t)^s), \text{dist}(x_{t+1}, \Omega) = O(\text{dist}(x_t, \Omega)^s),$$

$$s \coloneqq \min\left\{ (1+\rho)q, (1+p)q, \left(1+p-\frac{\rho}{q}\right)(1+p)q \right\}.$$

Corollary 3

Consider the setting of Theorem 2. If instead of (Cond-Q), the following inequalities hold:

$$\begin{cases} (1+p)q &> 1, \\ \left(1+p-\frac{\rho}{q}\right)(1+p)q &> 1, \\ \rho+q &> 1, \\ \rho &> 0, \end{cases}$$
 (Cond-R)

then we obtain Q-superlinear convergence within V for $\{r(x_t)\}$ of the form

$$r(x_{t+1}) = O(r(x_t)^{1+s_2}),$$

where

$$s_2 \coloneqq \min\left\{ (1+p)q, \left(1+p-\frac{\rho}{q}\right)(1+p)q, \rho+q, 1+\rho \right\} - 1 > 0,$$

and *R*-superlinear convergence within *V* for $\{\operatorname{dist}(x_t, \Omega)\}$: $\lim_{t\to\infty} \operatorname{dist}(x_t, \Omega)^{\frac{1}{t}} = 0.$

Theorem 4

If the conditions in either Theorem 2 or Corollary 3 hold true and that the initial point x_0 is close enough to Ω , then $x_t \to x^*$ strongly for some $x^* \in \Omega^{2}$

²Note that we are considering Hilbert spaces.

Implications

(Cond-Q):
$$(1+\rho)q > 1$$
, $(1+p)q > 1$, $\left(1+p-\frac{\rho}{q}\right)(1+p)q > 1$

- ▶ q > 1: might get faster-than-quadratic rates; also ok to have p = 0, ρ = 0: constant damping but still with superlinear convergence
- ▶ Quadratic convergence: happens if p = ρ = q = 1, namely the case of the ordinary error bound plus strongly semismooth A.

• If p = 1 and $q \le 1$, the condition becomes

$$q > \frac{1}{2}, \quad 2q - \frac{1}{2} > \rho, \quad q > \frac{-1 + \sqrt{33}}{8}$$

In particular, we can set $\rho = 2(-1 + \sqrt{33})/8 - 1/2 = (-3 + \sqrt{33})/4$ to allow the widest range of q.

If q = 1, then p ≥ ρ > 0 implies superlinear convergence.
(Cond-R): (1 + p)q > 1, (1 + p - ρ/q) (1 + p)q > 1, ρ + q > 1, ρ > 0
When p = 1: superlinear convergence only requires q > 1/2 and ρ = 1/2
Weaker than (Cond-Q) when q ≤ 1, but stronger when q > 1

<u>Outline</u>

Introduction

Algorithmic Framework

Local Superlinear Convergence for (GE)

Finite Termination when q > 1 for (Reg-Opt)

A Global Algorithm for (Reg-Opt)

Equivalence Between (HEB) and Sharpness

For (Reg-Opt), when f and Ψ are both convex, actually ${\rm dist}(x,\Omega) \leq r(x)^q$

is equivalent to

$$F(x) - F^* \ge \kappa_2 \operatorname{dist}(x, \Omega)^{1 + \frac{1}{q}}$$
 (Sharpness)

for some $\kappa_2>0.$ This relates the objective distance and the iterate distance to the solutions

- q > 1 only possible when $\Psi \neq 0$
- For q = ∞, (Sharpness) is the so-called weak-sharp minima, and it is known that for problems with such a property, a solution in Ω can be obtained in a finite number of iterations for a wide range of algorithms
- We get a finite termination result for a broader range (q > 1) of problems and a very broad class of algorithms, and semismoothness is not needed in this result

Finite Termination

Theorem 5

Consider (Reg-Opt) with F satisfying (HEB) for some q > 1 and some $\kappa > 0$. If f and Ψ are both convex, then any algorithm guaranteeing

$$\lim \inf_{t \to \infty} r(x_t) = 0 \tag{1}$$

ensures that there is some $t_0 < \infty$ such that $r(x_{t_0}) = 0$ and hence $x_{t_0} \in \Omega$.

Any convergent algorithm (such that a limit point of its iterates is a solution) attains finite termination in this case

<u>Outline</u>

Introduction

Algorithmic Framework

Local Superlinear Convergence for (GE)

Finite Termination when q > 1 for (Reg-Opt)

A Global Algorithm for (Reg-Opt)

Issues of Existing Approaches

- ► For globalization for (Reg-Opt), the approximate solution to the subproblem is called x̂_{t+1}, which is just a candidate for the next iterate
- Some line search for ensuring global convergence
- Use a modified version of (Stop) to get descent directions: q_t(x̂_{t+1}) ≤ q_t(x_t), r_t(x̂_{t+1}) ≤ νr(x_t)^{1+ρ}, (Stop') where r_t(·) is the residual of the subproblem, and q_t(x) := ⟨∇f(x_t), x - x_t⟩ + ¹/₂⟨J_t(x - x_t), x - x_t⟩ + Ψ(x)

 Yue et al. (2019):³ backtracking from α_t = 1 until
 - $F(x_t + \alpha_t(\hat{x}_{t+1} x_t)) \leq F(x_t) \gamma \alpha_t \|\hat{x}_{t+1} x_t\|^2$
 - Requires Lipschitzian $abla^2 f$ (to use Taylor expansion for sufficient decrease)
 - Does not guarantee unit step size acceptance when $q=\rho=1$
 - Only considered (Reg-Opt) and got superlinear convergence only for q = 1

³Man-Chung Yue, Zirui Zhou, and Anthony Man-Cho So. A family of inexact SQA methods for non-smooth convex minimization with provable convergence guarantees based on the Luo–Tseng error bound property. 17 Mathematical Programming, 174(1-2):327–358, 2019

- Mordukhovich et al. (2022):⁴ accept unit step size when r(x) decreases at a prespecified linear rate; otherwise backtracking above
 - Again need $abla^2 f$ Lipschitz continuous, and only consider (Reg-Opt)
 - Guarantee unit step size eventually accepted if local superlinear convergence is present, but objective value might not be strictly decreasing
 - Prove Q-superlinear convergence for $r(x_t)$ and R-superlinear convergence for $dist(x_t, \Omega)$ with conditions the same as (Cond-R)
 - Earlier preprint proved Q-superlinear convergence for both $r(x_t)$ and ${\rm dist}(x_t,\Omega)$ for $q>(-1+\sqrt{5})/2\approx 0.618$ with suitable ρ (ours is $q>(-1+\sqrt{33})/8\approx 0.593)$
 - Convergence faster than quadratic for q>1 (we have seen that actually it is finite termination)

⁴Boris S. Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally convergent proximal Newton-type method in nonsmooth convex optimization. *Mathematical Programming*, 2022.

Online first. The first version appears at arXiv:2011.08166v1 with some slightly different results

Our Algorithm

Algorithm 1: A Proximal-Newton Method Guaranteeing Strict Decrease and Superlinear Convergence for the Objective Value

```
input : x_0 \in \mathcal{H}, \beta, \gamma \in (0, 1), \nu \in [0, 1), c > 0, \delta > 0
Compute an upper bound L for the Lipschitz constant of \nabla f
\rho \leftarrow 1
for t = 0, 1, ... do
      Find an approximate solution \hat{x}_{t+1} of the subproblem satisfying
        (Stop')
     \alpha_t \leftarrow 1, \quad p_t \leftarrow \hat{x}_{t+1} - x_t
      while True do
            y_{t+1}(\alpha_t) \leftarrow x_t + \alpha_t p_t
           \bar{x}_{t+1}(\alpha_t) \leftarrow \operatorname{prox}_{\Psi/L} (y_{t+1}(\alpha_t) - \nabla f(y_{t+1}(\alpha_t))/L)
           if F(\bar{x}_{t+1}(\alpha_t)) < F(x_t) - \gamma \alpha_t^2 ||p_t||^{2+\delta} then
                 x_{t+1} \leftarrow \bar{x}_{t+1}(\alpha_t)
                  Break
            else \alpha_t \leftarrow \beta \alpha_t
```

Lemma 6

If f is Lipschitz-continuously differentiable (convexity not needed except for subproblem construction, but can work around this by using PSD approximations for the generalized Hessian) and Ψ is convex, closed, and proper, then we have for Algorithm 1 that

$$\lim_{t \to \infty} r(x_t) = 0.$$

Unit Step Size Acceptance and Superlinear Convergence

Theorem 7

Consider Algorithm 1 with the setting of Theorem 2 satisfied and f convex. If (Cond-Q) holds and δ is large enough such that $\|p_t\|^{2+\delta} = o(\operatorname{dist}(x_t, \Omega)^{(q+1)/q})$, then there is $t_0 \ge 0$ such that $\alpha_t = 1$ is accepted for all $t \ge t_0$, and

$$dist(x_{t+1}, \Omega) = O\left(dist(x_t, \Omega)^{1+s}\right),$$

$$r(x_{t+1}) = O\left(r(x_t)^{1+s}\right),$$

$$F(x_{t+1}) - F^* = O\left(\left(F(x_{t+1}) - F^*\right)^{1+s}\right), \quad \forall t \ge t_0.$$

- \blacktriangleright For the allowed range of $Q\mbox{-superlinear convergence}, \, \delta=2$ is large enough
- The key for working around Lipschitzian Hessian is to use (Sharpness) and the objective bound from proximal gradient to get objective change guarantees

Simplification for Smooth Problems

• If $\Psi \equiv 0$: the bound described above directly comes from convexity of f

Don't need another (proximal) gradient step and can keep all guarantees

Algorithm 2: A Simple semismooth Newton Method

$$\begin{split} & \text{input} \ : x_0 \in \mathcal{H}, \ \beta, \gamma \in (0, 1), \ \nu \in [0, 1), \ c > 0, \rho \in (0, 1], \ \delta \geq 0 \\ & \text{for } t = 0, 1, \dots \text{ do} \\ & \text{Find } \hat{x}_{t+1} \text{ satisfying (Stop')} \\ & p_t \leftarrow \hat{x}_{t+1} - x_t, \ \alpha_t \leftarrow 1 \\ & \text{while } F(x_t + \alpha_t p_t) > F(x_t) - \gamma \alpha_t^2 \|p_t\|^{2+\delta} \text{ do } \alpha_t \leftarrow \beta \alpha_t \\ & x_{t+1} \leftarrow x_t + \alpha_t p_t \end{split}$$

• All guarantees follow that for Algorithm 1 if $\Psi \equiv 0$

If ρ = 0.5, f has Lipschitzian Hessian, and c is chosen according to the Lipschitz constant of ∇²f: coincides with Mishchenko (2021); Doikov and Nesterov (2021), who mainly focus on global complexity without considering inexactness or considering when f is not twice-differentiable

- Our approximation of allowing $||J_t \nabla A(x_t)|| = O\left(r(x_t)^{\theta}\right)$ with $\theta \in [\rho, 1]$ covers the case of the Levenberg–Marquardt method when the nonlinear equation has at least one solution
- In this case the residual converges to 0 at a fast rate, so the error of the estimation of the Hessian using the Jacobian will satisfy this condition

Thanks for Listening

Questions?

References I

Nikita Doikov and Yurii Nesterov. Gradient regularization of newton method with bregman distances. Technical report, 2021. arXiv:2112.02952.

- Jason D. Lee, Yuekai Sun, and Michael A. Saunders. Proximal Newton-type methods for minimizing composite functions. *SIAM Journal on Optimization*, 24(3):1420–1443, 2014.
- Konstantin Mishchenko. Regularized Newton method with global $O(1/k^2)$ convergence. Technical report, 2021. arXiv:2112.02089.
- Boris S. Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally convergent proximal Newton-type method in nonsmooth convex optimization. *Mathematical Programming*, 2022. Online first. The first version appears at arXiv:2011.08166v1 with some slightly different results.

Man-Chung Yue, Zirui Zhou, and Anthony Man-Cho So. A family of inexact SQA methods for non-smooth convex minimization with provable convergence guarantees based on the Luo–Tseng error bound property. *Mathematical Programming*, 174(1-2):327–358, 2019.