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Introduction



Problem Setting

Consider the following generalized equation problem:

find x € H such that 0¢€ (A+ B)(x), (GE)

H is a Hilbert space: inner product (-, -) and induced norm ||-||

A B:H =2

>

>

» B maximal monotone

» Assume that the solution set € to (GE) is non-empty.
>

A single-valued and continuous everywhere, and locally Lipschitz
continuous in a neighborhood U of €2:

AL >0 [JA(z) = AWl < Lllz —yll, Vao,y e U.



Regularized Optimization

A more approachable special case we will separately discuss in detail is
regularized optimization:

Iniqr{l F(z) = f(x) + ¥(x), (Reg-Opt)
IS

» f continuously differentiable with V f Lipschitz continuous

> U :H — [—o0,00] convex, proper, and closed

» Namely, A=V f, B=0Vin (GE)



Newton's Method

» For (GE), if A € C!, VA is Lipschitz continuous, B =0, 0 € A(z*),
V A(z*) is nonsingular, the iterates {z;} converge to z*, Newton's
method

) -1
pe=VA@)  Alxe), @1 =x+pe
ensures quadratic convergence to x* when we are close enough to it:
2
leesr = 2l = O (Jlo - *)
and quadratic convergence of the residual to O:

JA@e)ll = 0 (I1A@)]?)

» For large-scale problems such that inverting the Jacobian is too costly,
we use iterative methods to obtain truncated Newton directions:
pe~ (VA(z,)) "t A(y) instead

> With suitable stopping conditions for the iterative method, the same
convergence rates can be retained



Proximal Newton for (Reg-Opt)

» For smooth optimization, namely (Reg-Opt) with ¥ = 0, the (truncated)
Newton direction can be seen as

po~ argmin (V (), p) + 3 p, V2 (22)p).
peEH

» Thus a natural way to extend Newton's method to the regularized
setting in which ¥ £ 0 is to solve

. 1
P R argrgm (Vf(ze), p) + §<P, V2 f(@e)p) + Wz + p).
pe

> )L If f € C? is strongly convex and V2f is Lipschitz
continuous, we still get quadratic convergence for ||z; — z*||

» \We can generalize this approach back to (GE)
zep1 & (VA(ze) + B) ™ (VA(z) — A) (),

and similar local convergence results can be easily obtained

!Jason D. Lee, Yuekai Sun, and Michael A. Saunders. Proximal Newton-type methods
for minimizing composite functions.
SIAM Journal on Optimization, 24(3):1420-1443, 2014
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Questions to Ask

» What if VA is singular and 2 is not a singleton?

> Is differentiability of A really needed? Does semismooth Newton still
work in this setting (nondifferentiable A and a possibly singular
generalized Jacobian OA, further together with the additional set-valued
B term)?

> If we only have either nondifferentiability of A or singularity of VA, the
problem should not be too difficult, but the combination of these two
degeneracy conditions makes the situation more complicated
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» Not requiring A to be differentiable, not requiring its (Clarke)
generalized Jacobian to be nonsingular, allowing €2 to be an unbounded
set (so not assuming iterates converging to a point)

» Using a damping strategy, we get superlinear convergence of inexact
forward-backward-semismooth-Newton for (GE) for both dist(xz,2) and
the residual

r(z) = ||z — (ld+ B)~'(Id — A)z||,  (Forward-Backward Residual)

(which is 0 iff 0 € (A + B)x and is continuous), where Id is the identity
operator, under a Holderian error bound condition: there are k,q > 0
such that

dist (z, Q) = dist (g; (A+B)™! (0)) < (21, (HEB)

for all z in a neighborhood U of Q (Q-superlinear convergence can be
guaranteed for ¢ > (—1 + v/33)/8)
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» For (Reg-Opt), we futher obtain finite termination for ¢ > 1

» For (Reg-Opt), we also propose a globally convergent (only need
convexity of f and W) algorithm that possesses all the local properties
above (need (HEB)), and ensures that F'(z;) is strictly decreasing and
also converges QQ-superlinearly to F™* := mingey F(z), without needing
f to be twice-differentiable
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Algorithmic Framework



Motivations

» To deal with nondifferentiable A:

- Define 0A(z) as the (Clarke) generalized Jacobian of A at x, which is
well-defined in U as A is locally Lipschitz continuous

- Take any element from QA(x), abuse the notation to still call it VA(x)

» To deal with possible singularity of V A:

- Add a damping term that vanishes as we approach €2: we do not know (2 a
priori, so need to rely on (Forward-Backward Residual)

> As the solution is inexact, also allow approximation of VA(z)



Algorithm

» Given the current iterate x;, we update the iterate by

Tip1 ~ (Hy + B)_l (Hy — A) (1), Hy o= (pald + i), gy = er (z4)”
(Proximal semismooth Newton)
for some given ¢ > 0,p > 0

> J; is a positive semidefinite linear operator with
IV A(z;) € A(z;) such that ||J; — VA(z)|| = O (r (g;t)") for 0 € [p,1]

(only need A maximal monotone around points with r(z) = 0)

» The resolvent (Id + B)~! of B is single-valued and well-defined, and
hence so is (H; + B)™! as J; is positive semidefinite.

» For the approximate solution, consider the following criterion with v > 0:
ri(wes) = ||zess = (d+ B) ™ ((Hi = A) (w0) = (He = 1d) (210))|
< r(z) e (Stop)

r(z¢41): forward-backward residual of (Proximal semismooth Newton),
so it is 0 when x;11 is an exact solution of that subproblem
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Local Superlinear Convergence for (GE)



Semismoothness

» It is known that when B = 0, semismooth Newton that uses arbitrary
elements of the generalized Jacobian can achieve superlinear convergence
if VA(x) is nonsingular at the point of convergence

Definition 1 (Semismooth)

A is semismooth of order p at x if it is directionally differentiable at =, and
for any VA(x + Ax) € 9(A(x + Ax)) with Az — 0,

Az + Az) — A(z) — (VA(z + Az)) Az = O (||Az||' ).
When p = 1, it is called strongly semismooth.

> A generalization of A differentiable with VA Holder continuous of order
p
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Local Convergence

Theorem 2

Consider solving (GE) using (Proximal semismooth Newton) and (Stop),
with A single-valued and continuous, B maximal monotone, and € # 0.
Assume (HEB) holds for some g > 0 in a neighborhood V' of Q2 and A is
locally Lipschitz continuous and semismooth of order p for some p € (0, 1]
within the same neighborhood. If the following inequalities are satisfied:

(1+p)q > 1,
(1+p)q > 1, (Cond-Q)
(1+p-2)1+p)a >1,

we obtain QQ-superlinear convergence in V with the form
r(xer1) = O (r(xy)®), dist (2441, Q) = O (dist (x4, Q)%) ,
s min{ (14 .+ ). (140 = 2) (14 9)a .
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Corollary 3

Consider the setting of Theorem 2. If instead of (Cond-Q), the following
inequalities hold:

(1+p)g > 1,
1+p— B) 1+ > 1,
( p—45) (1 +p)g (CondR)
p+q > 1,
P > 0,

then we obtain Q-superlinear convergence within V' for {r(xz;)} of the form

T(l’t+1) =0 (r(xt)1+82) )

where
59 ::min{(l +p)g, (1 +p— g)(l +p)q,p+q,1+p} —-1>0,

and R-superlinear convergence within V' for {dist(x,2)}:
limy_, oo dist (¢, Q)% =0. "



Theorem 4

If the conditions in either Theorem 2 or Corollary 3 hold true and that the

initial point xq is close enough to §2, then xy — x* strongly for some
z* e Q.2

2Note that we are considering Hilbert spaces.
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Implications

(Cond-Q): (1+p)g>1, (1+p)g>1 (1+p—£)(1+pg>1
> ¢ > 1: might get faster-than-quadratic rates; also ok to have
p =0, p = 0: constant damping but still with superlinear convergence

» Quadratic convergence: happens if p = p = ¢ = 1, namely the case of
the ordinary error bound plus strongly semismooth A.

» If p=1and g <1, the condition becomes
1 1 —1+ /33
=, 02— = —
q> 9’ q 9 >p, 9> 3

In particular, we can set p = 2(—1+/33)/8 —1/2 = (=3 +/33) /4 to
allow the widest range of q.

> If ¢ =1, then p > p > 0 implies superlinear convergence.

(Cond-R): (1 +p)g > 1, <1+p— g) 14+p)g>1,p+q>1,p>0

» When p = 1: superlinear convergence only requires ¢ > 1/2 and p = 1/2
» Weaker than (Cond-Q) when ¢ < 1, but stronger when ¢ > 1 1
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Finite Termination when ¢ > 1 for (Reg-Opt)



Equivalence Between (HEB) and Sharpness

For (Reg-Opt), when f and ¥ are both convex, actually
dist(z, Q) < r(x)?
is equivalent to
F(z) — F* > kodist(z, Q)H% (Sharpness)

for some ko > 0. This relates the objective distance and the iterate
distance to the solutions
> ¢ > 1 only possible when ¥ # 0

» For ¢ = 0o, (Sharpness) is the so-called weak-sharp minima, and it is
known that for problems with such a property, a solution in £ can be
obtained in a finite number of iterations for a wide range of algorithms

» We get a finite termination result for a broader range (¢ > 1) of
problems and a very broad class of algorithms, and semismoothness is

not needed in this result
15



Finite Termination

Theorem 5

Consider (Reg-Opt) with F' satisfying (HEB) for some ¢ > 1 and some
k> 0. If f and ¥ are both convex, then any algorithm guaranteeing

hmtglgo r(z) =0 (1)

ensures that there is some ty < oo such that r(x,) = 0 and hence x4, € Q.

» Any convergent algorithm (such that a limit point of its iterates is a
solution) attains finite termination in this case
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A Global Algorithm for (Reg-Opt)



Issues of Existing Approaches

>

For globalization for (Reg-Opt), the approximate solution to the
subproblem is called #;11, which is just a candidate for the next iterate

» Some line search for ensuring global convergence

» Use a modified version of (Stop) to get descent directions:

a(e1) < alm), (@) < (), (Stop’)
where 7.(+) is the residual of the subproblem, and

1
qe(z) = (Vf(xy), v — ) + §(Jt (x—z¢), x —x4) + V()
):3 backtracking from oy = 1 until

N A 2
F(x + au(@ea1 — a1)) < F(ae) = you||Zre1 — 2|
- Requires Lipschitzian V2 f (to use Taylor expansion for sufficient decrease)

- Does not guarantee unit step size acceptance when ¢ = p =1

- Only considered (Reg-Opt) and got superlinear convergence only for ¢ = 1

¥Man-Chung Yue, Zirui Zhou, and Anthony Man-Cho So. A family of inexact SQA

methods for non-smooth convex minimization with provable convergence guarantees
based on the Luo—Tseng error bound property. 17
Mathematical Programming, 174(1-2):327-358, 2019



» Mordukhovich et al. (2022):* accept unit step size when r(z) decreases
at a prespecified linear rate; otherwise backtracking above

Again need V2 f Lipschitz continuous, and only consider (Reg-Opt)

Guarantee unit step size eventually accepted if local superlinear convergence
is present, but objective value might not be strictly decreasing

Prove @Q-superlinear convergence for r(z;) and R-superlinear convergence for
dist(z, Q) with conditions the same as (Cond-R)

Earlier preprint proved @Q-superlinear convergence for both r(z;) and
dist(x, Q) for ¢ > (=1 ++/5)/2 a2 0.618 with suitable p (ours is
q>(—1++/33)/8 ~ 0.593)

Convergence faster than quadratic for ¢ > 1 (we have seen that actually it is
finite termination)

*Boris S. Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally
convergent proximal Newton-type method in nonsmooth convex optimization.
Mathematical Programming, 2022.

Online first. The first version appears at arXiv:2011.08166v1 with some slightly different
results
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Our Algorithm

Algorithm 1: A Proximal-Newton Method Guaranteeing Strict Decrease
and Superlinear Convergence for the Objective Value

input :x0€H, B,7€(0,1),r€[0,1),¢>0,6>0
Compute an upper bound L for the Lipschitz constant of V f
p+—1
fort=0,1,... do
Find an approximate solution Z;y1 of the subproblem satisfying
(Stop’)
ap 1, pr Tpr — o
while True do
Yry1(on) <=z + aupy
Tr1(ar) < proxyp, (Ye1(ae) — VF(ye1(ow)) /L)
if F(Zr1(ar) < Fa) —yafpe]|* then
Tip1 < Typ1(on)

Break
else o; + Bay
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Global Convergence

If f is Lipschitz-continuously differentiable (convexity not needed except for
subproblem construction, but can work around this by using PSD
approximations for the generalized Hessian) and WV is convex, closed, and
proper, then we have for Algorithm 1 that

tllglo r(z¢) = 0.

20



Unit Step Size Acceptance and Superlinear Convergence

Theorem 7
Consider Algorithm 1 with the setting of Theorem 2 satisfied and f convex.

If (Cond-Q) holds and ¢ is large enough such that
||ptH2+‘s = o(dist(zs, Q)@t1)/9), then there is tg > 0 such that oy = 1 is

accepted for all t > ty, and

dist(z¢41, Q) = O (dist(z¢, 2)1F)
r(ziy1) = O (r(xt)Hs) ,

F(ze) - F*=0 ((F (Tep1) — F*)H“> . V> .

» For the allowed range of ()-superlinear convergence, § = 2 is large
enough

» The key for working around Lipschitzian Hessian is to use (Sharpness)
and the objective bound from proximal gradient to get objective change
guarantees



Simplification for Smooth Problems

» If ¥ = 0: the bound described above directly comes from convexity of f

» Don't need another (proximal) gradient step and can keep all guarantees

Algorithm 2: A Simple semismooth Newton Method

input :x0€H, B,7€(0,1),v€10,1),¢>0,p€ (0,1}, >0
fort=0,1,... do
Find 241 satisfying (Stop’)
Pt Tyl — T, o 1 ]
while F(z; + aypy) > F(z;) — v ||p]|*t do ay « Bay
T4l < T + apy

> All guarantees follow that for Algorithm 1 if ¥ =0

> If p = 0.5, f has Lipschitzian Hessian, and c is chosen according to the
Lipschitz constant of V2 f: coincides with )
), who mainly focus on global complexity without

considering inexactness or considering when f is not twice-differentiable
22



Special case: Levenberg—Marquardt Method

» Our approximation of allowing ||J; — VA(z)|| = O <r ($t)9> with

6 € [p, 1] covers the case of the Levenberg—Marquardt method when the
nonlinear equation has at least one solution

» In this case the residual converges to 0 at a fast rate, so the error of the
estimation of the Hessian using the Jacobian will satisfy this condition

23



Thanks for Listening

Questions?
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