
Training Structured Neural Networks Through
Manifold Identification and Variance Reduction

LEE Ching-pei

Joint work with Zih-Syuan Huang (AS)



Outline

1 Overview and Motivation

2 Algorithm

3 Theoretical Properties

4 Experimental Results



Structured Models

In many scenarios, it is desirable to train a machine learning model
with certain structures

Usually achieved by adding a regularizer Ψ to the
training/optimization objective function
Examples (regularizer in the bracket):
- Prevent overfitting/Achieve low model complexity (`2-norm

regularization)

- Satisfy certain constraints (indicator function of the feasible set)

- Achieve structured or unstructured sparsity (`1-norm or group-LASSO
norm)
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Motivating Example: Structured Sparsity I

In many cases, many model parameters can be trimmed out without
affecting its generalization ability

Trimming out such parameters achieves sparsity and can reduce
computational burden for prediction

For neural networks, we want to trim out neurons (in fully-connected
layers) or a whole convolutional kernel, but not just individual
weights, to really reduce model size and accelerate prediction

But surely we still want to start from an overparameterized one
before starting training
GPUs are unable to do sparse matrix operations efficiently, mainly
because of the memory access pattern
- Dense computation: sequential access, cache miss minimized
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Motivating Example: Structured Sparsity II

- Sparse computation: non-continuous access, high miss rate

Group-LASSO norm: parameters that should either exist together or
be removed together are bound together

Given λ > 0 and a collection G of index sets {Ig} of the model
variable W , together with weights {wg}, this regularizer is defined
as

ψ(W ) := λ
∑|G|

g=1 wg
∥∥∥WIg∥∥∥
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Regularizers and Structures

Model-side analyses use (first-order necessary) optimality conditions
to show that at stationary points, certain structures will occur

But we don’t have such guarantees for approximate solutions

Unfortunately, training/optimization algorithms can only provide
approximate solutions: they generate a sequence {W t} of models
such that W t → W ∗ for some W ∗ that is a stationary
point/solution, and output W T for some T when the algorithm
terminates

What do we know about structures at W T ?
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State of the Art in Deep Learning

State of the art for training structured neural networks: only have
convergence guarantees to stationary points, but no guarantee for
the structure of their output model even if a regularizer is
incorporated
- Stochastic subgradient methods (Wen et al., 2016, 2018): no

structure at all at the output; reported result requires a
post-processing step and another round of training

- Proximal stochastic gradient methods: (Yang et al., 2019; Bai et al.,
2019; Deleu and Bengio, 2021; Yun et al., 2021): identify artificial
structure from the proximal operator from the regularizer

The output structure can be very far away from that at W ∗ due to the
variance of the stochastic gradients

Known to output unstable and highly suboptimal structure even in the
convex setting (Sun et al., 2019; Poon et al., 2018)
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Manifold Identification I

For regularizer that are partly smooth at a point W ∗, the structure
at W ∗ can be represented as a low-dimensional manifold

A function is partly smooth at W ∗ if it is smooth around W ∗ when
restricted to a certain smooth manifold M, and its value changes
drastically along directions leaving M

Figure: Example:`1-norm with the associated manifold (the valley) for the
red dot W ∗
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Manifold Identification II

Most regularizers popular in machine learning are partly smooth: `1
norm, group-LASSO norm, nuclear norm, etc

The structure at the solution W ∗ can be identified if for {W t}
converging to W ∗, W t is in M for all t large enough

Called manifold identification in nonlinear optimization: our goal!
(locally optimal structure for sequences converging to W ∗)

Deterministic first-order methods like proximal-gradient-type
methods are known to achieve so
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Variance Reduction

For stochastic methods to achieve manifold idenification, variance
reduction is needed (Poon et al., 2018)
- The missing element in existing methods for training structured NNs

But variance reduction that utilizes the finite-sum structure of ERM
does not work for deep learning (Defazio and Bottou, 2019) because
of data augmentation
Need an algorithm achieving variance reduction in the infinite-sum
setting, while
- being practically feasible: not more expensive than SGD + momentum

- Incorporate momentum for good prediction performance

Our proposal: regularized modernized dual averaging (RMDA),
inspired by RDA (Xiao, 2010) and MDA (Jelassi and Defazio, 2020)
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Our Contributions

Variance reduction beyond finite-sum with low cost

Guaranteed optimal structure identification in finite steps

Superior empirical performance over state of the art for both
structured sparsity and pruning
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Problem Formulation

Consider the following regularized optimization problem:

min
W∈E

F (W ) := Eξ∼D [fξ (W )] + ψ (W ) (Regularized Loss)

E is a Euclidean space with its inner product 〈·, ·〉 and the
associated norm ‖·‖

D is a distribution over a space Ω

fξ is differentiable almost everywhere for all ξ ∈ Ω

ψ(W ) is a regularizer that might be nondifferentiable
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Algorithmic Framework

Algorithm 1: RMDA (W 0, T, η(·), c(·))

input : Initial point W 0, learning rate schedule η(·), momentum
schedule function c(·), number of epochs T

V0 ← 0, α0 ← 0
for t = 1, . . . , T do

βt ←
√
t, st ← η(t)βt, αt ← αt−1 + st

Sample ξt ∼ D and compute Gt ← ∇fξt(W t−1)
V t ← V t−1 + stG

t

W̃ t ← argminW 〈V t, W 〉+ βt
2 ‖W −W

0‖2 + αtψ(W )
W t ← (1− c(t))W t−1 + c(t)W̃ t

output: The final model W T
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Algorithm Details
Starting with an initial point W 0, at the t > 0 iteration,

Draw an independent sample ξt ∼ D to compute the stochastic
gradient ∇fξt(W t−1)

Deciding a learning rate ηt and the scaling factor βt :=
√
t

Vt := ∑t
k=1 ηkβk∇fξk(W k−1) = Vt−1 + ηtβt∇fξt(W t−1)

W̃ t := proxαt
βt
ψ

(
W 0 − V t

βt

)
, αt := ∑t

k=1 βkηk: dual weighted
averaging

proxg(x) := argminy 1
2‖x− y‖

2 + g(y): proximal operator

W t = (1− ct)W t−1 + ctW̃
t = W t−1 + ct

(
W̃ t −W t−1

)
:

momentum

Multi-stage learning rates; restart Vt and αt (set to 0) whenever the
learning rate changes
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Lemma 1
Consider Algorithm 1. Assume for any ξ ∼ D, fξ is
L-Lipschitz-continuously-differentiable almost surely for some L, and
there is C ≥ 0 such that Eξt∼D‖∇fξt (W t−1)‖2 ≤ C for all t. If {ηt}
satisfies ∑

βtηtα
−1
t =∞,

∑(
βtηtα

−1
t

)2
<∞, (1)∥∥∥W t+1 −W t

∥∥∥ (βtηtα−1
t

)−1 a.s.−−→ 0,

then α−1
t V t −→ ∇f(W t−1) with probability one. Moreover, if {W t}

lies in a bounded set, we get E
∥∥∥α−1

t V t −∇f (W t−1)
∥∥∥2
→ 0 even if

the second condition in (1) is replaced by a weaker condition of
βtηtα

−1
t → 0.

LEE Ching-pei 14 / 22



Convergence to Stationary Points

Theorem 2
Consider Algorithm 1 with the conditions in Lemma 1 hold, and {ct}
satisfying ∑ ct =∞. Assume the set of stationary points
Z := {W | 0 ∈ ∂F (W )} is nonempty and βtα−1

t → 0. For any given
W 0, consider the event that {W̃ t} converges to a point W ∗ (each
event corresponds to a different W ∗), then if ∂ψ is outer
semicontinuous at W ∗, and this event has a nonzero probability,
W ∗ ∈ Z, or equivalently, W ∗ is a stationary point, with probability
one conditional on this event.
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Manifold Identification of RMDA
Theorem 3
Consider Algorithm 1 with the conditions in Theorem 2 satisfied.
Consider the event of {W̃ t} converging to a certain point W ∗ as in
Theorem 2, if the probability of this event is nonzero; ψ is prox-regular
and subdifferentially continuous at W ∗ and partly smooth at W ∗

relative to the active C2 manifold M; ∂ψ is outer semicontinuous at
W ∗; and the nondegeneracy condition

−∇f (W ∗) ∈ relint ∂ψ (W ∗)

holds at W ∗, then conditional on this event, almost surely there is
T0 ≥ 0 such that

W̃ t ∈M, ∀t ≥ T0.

In other words, the active manifold at W ∗ is identified by the iterates
of Algorithm 1 after a finite number of iterations almost surely.
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Setting

Task: structured sparsity by using the group-LASSO norm
- Each channel in convolutional layers as one group

- All outputs from one neuron as one group
¡++¿
We compare with the following state of the art methods for this
task
- RMDA: Our method

- ProxSGD (Yang et al., 2019): A simple proxMSGD algorithm.

- ProxSSI (Deleu and Bengio, 2021): This is a special case of the
adaptive proximal SGD framework of Yun et al. (2021)

- MSGD: SGD with momentum, this is a dense baseline
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Stability and Correctness

Group sparsity pattern correctness and training error rates on
synthetic data

Generate a sparse model first and decide data labels using it

Solid lines: sparsity pattern correctness

dotted lines: prediction accuracy on training data
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Structured Sparsity v.s. Epochs
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Final Structured Sparsity and Validation Accuracy

Algorithm Validation acc. Group sparsity Validation acc. Group sparsity
LeNet5/MNIST LeNet5/FashionMNIST

Dense 99.4 ± 0.1% - 92.0 ± 0.0% -
ProxSGD 99.1 ± 0.0% 76.6 ± 2.3% 91.0 ± 0.2% 50.5 ± 2.7%
ProxSSI 99.1 ± 0.0% 77.8 ± 1.6% 90.9 ± 0.0% 60.5 ± 1.1%
RMDA 99.1 ± 0.1% 79.8 ± 1.6% 91.4 ± 0.1% 66.2 ± 1.7%

VGG19/CIFAR10 VGG19/CIFAR100
Dense 94.0 ± 0.1% - 74.6 ± 0.2% -
ProxSGD 92.4 ± 0.3% 72.6 ± 6.0% 71.9 ± 0.1% 08.6 ± 4.9%
ProxSSI 92.5 ± 0.0% 81.1 ± 0.2% 66.2 ± 0.4% 46.4 ± 1.4%
RMDA 93.6 ± 0.2% 86.4 ± 0.3% 72.2 ± 0.2% 58.9 ± 0.4%

ResNet50/CIFAR10 ResNet50/CIFAR100
Dense 95.7 ± 0.0% - 79.1 ± 0.2% -
ProxSGD 92.4 ± 0.1% 76.8 ± 4.1% 75.5 ± 0.5% 51.8 ± 0.3%
ProxSSI 94.1 ± 0.1% 74.8 ± 1.3% 74.5 ± 0.3% 32.8 ± 2.5%
RMDA 94.3 ± 0.0% 83.0 ± 0.5% 76.1 ± 0.5% 57.7 ± 3.8%
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Comparison with Pruning

`1 norm for pruning/unstructured sparsity

Compare RMDA with a state-of-the-art pruning method: RigL (Evci
et al., 2020, ICML’20) by Google Brain/DeepMind

1, 000 epochs for both RMDA and RigL

ResNet50 with CIFAR10 ResNet50 with CIFAR100
Algorithm Sparsity Accuracy Sparsity Accuracy
Dense baseline 94.81% 74.61%
RMDA 98.36% 93.78% 98.32% 74.32%
RigL 98.00% 93.41% 98.00% 70.88%
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Conclusions

Proposed an algorithm RMDA for training structured neural
networks, utilizing variance reduction and manifold identification

Experiments on structured and unstructured sparsity outperformed
state of the art

Code available at https://www.github.com/zihsyuan1214/rmda
Full paper at https://openreview.net/pdf?id=mdUYT5QV0O

Future work: an adaptive version, and extend to other tasks
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