Training Structured Neural Networks Through Manifold Identification and Variance Reduction

LEE Ching-pei

Joint work with Zih-Syuan Huang (AS)

Overview and Motivation

2 Algorithm

- 3 Theoretical Properties
- 4 Experimental Results

- In many scenarios, it is desirable to train a machine learning model with certain structures
- \bullet Usually achieved by adding a regularizer Ψ to the training/optimization objective function
- Examples (regularizer in the bracket):
 - Prevent overfitting/Achieve low model complexity ($\ell_2\text{-norm}$ regularization)
 - Satisfy certain constraints (indicator function of the feasible set)
 - Achieve structured or unstructured sparsity (ℓ_1 -norm or group-LASSO norm)

Motivating Example: Structured Sparsity I

- In many cases, many model parameters can be trimmed out without affecting its generalization ability
- Trimming out such parameters achieves sparsity and can reduce computational burden for prediction
- For neural networks, we want to trim out neurons (in fully-connected layers) or a whole convolutional kernel, but not just individual weights, to really reduce model size and accelerate prediction
- But surely we still want to start from an overparameterized one before starting training
- GPUs are unable to do sparse matrix operations efficiently, mainly because of the memory access pattern
 - Dense computation: sequential access, cache miss minimized

- Sparse computation: non-continuous access, high miss rate
- Group-LASSO norm: parameters that should either exist together or be removed together are bound together
- Given $\lambda > 0$ and a collection \mathcal{G} of index sets $\{\mathcal{I}_g\}$ of the model variable W, together with weights $\{w_g\}$, this regularizer is defined as

$$\psi(W) \coloneqq \lambda \sum_{g=1}^{|\mathcal{G}|} w_g \left\| W_{\mathcal{I}_g} \right\|$$

- Model-side analyses use (first-order necessary) optimality conditions to show that at stationary points, certain structures will occur
- But we don't have such guarantees for approximate solutions
- Unfortunately, training/optimization algorithms can only provide approximate solutions: they generate a sequence $\{W^t\}$ of models such that $W^t \to W^*$ for some W^* that is a stationary point/solution, and output W^T for some T when the algorithm terminates
- What do we know about structures at W^T ?

State of the Art in Deep Learning

- State of the art for training structured neural networks: only have convergence guarantees to stationary points, but no guarantee for the structure of their output model even if a regularizer is incorporated
 - Stochastic subgradient methods (Wen et al., 2016, 2018): no structure at all at the output; reported result requires a post-processing step and another round of training
 - Proximal stochastic gradient methods: (Yang et al., 2019; Bai et al., 2019; Deleu and Bengio, 2021; Yun et al., 2021): identify artificial structure from the proximal operator from the regularizer
 - The output structure can be very far away from that at W^\ast due to the variance of the stochastic gradients
 - Known to output unstable and highly suboptimal structure even in the convex setting (Sun et al., 2019; Poon et al., 2018)

Manifold Identification I

- For regularizer that are partly smooth at a point W^* , the structure at W^* can be represented as a low-dimensional manifold
- A function is partly smooth at W^* if it is smooth around W^* when restricted to a certain smooth manifold \mathcal{M} , and its value changes drastically along directions leaving \mathcal{M}

Figure: Example: ℓ_1 -norm with the associated manifold (the valley) for the red dot W^\ast

- Most regularizers popular in machine learning are partly smooth: ℓ_1 norm, group-LASSO norm, nuclear norm, etc
- The structure at the solution W^* can be identified if for $\{W^t\}$ converging to W^* , W^t is in \mathcal{M} for all t large enough
- Called manifold identification in nonlinear optimization: our goal! (locally optimal structure for sequences converging to W^*)
- Deterministic first-order methods like proximal-gradient-type methods are known to achieve so

Variance Reduction

- For stochastic methods to achieve manifold idenification, variance reduction is needed (Poon et al., 2018)
 - The missing element in existing methods for training structured NNs
- But variance reduction that utilizes the finite-sum structure of ERM does not work for deep learning (Defazio and Bottou, 2019) because of data augmentation
- Need an algorithm achieving variance reduction in the infinite-sum setting, while
 - being practically feasible: not more expensive than SGD + momentum
 - Incorporate momentum for good prediction performance
- Our proposal: regularized modernized dual averaging (RMDA), inspired by RDA (Xiao, 2010) and MDA (Jelassi and Defazio, 2020)

- Variance reduction beyond finite-sum with low cost
- Guaranteed optimal structure identification in finite steps
- Superior empirical performance over state of the art for both structured sparsity and pruning

Overview and Motivation

2 Algorithm

3 Theoretical Properties

4 Experimental Results

Consider the following regularized optimization problem:

$$\min_{W \in \mathcal{E}} \quad F(W) \coloneqq \mathbb{E}_{\xi \sim \mathcal{D}} \left[f_{\xi}(W) \right] + \psi(W) \qquad \text{(Regularized Loss)}$$

- ${\cal E}$ is a Euclidean space with its inner product $\langle\cdot,\,\cdot\rangle$ and the associated norm $\|\cdot\|$
- \mathcal{D} is a distribution over a space Ω
- f_{ξ} is differentiable almost everywhere for all $\xi \in \Omega$
- $\psi(W)$ is a regularizer that might be nondifferentiable

Algorithm 1: RMDA $(W^0, T, \eta(\cdot), c(\cdot))$

input : Initial point W^0 , learning rate schedule $\eta(\cdot)$, momentum schedule function $c(\cdot)$, number of epochs T $V_0 \leftarrow 0, \quad \alpha_0 \leftarrow 0$ for $t = 1, \ldots, T$ do $\beta_t \leftarrow \sqrt{t}, \quad s_t \leftarrow \eta(t)\beta_t, \quad \alpha_t \leftarrow \alpha_{t-1} + s_t$ Sample $\xi_t \sim \mathcal{D}$ and compute $G^t \leftarrow \nabla f_{\xi_t}(W^{t-1})$ $V^t \leftarrow V^{t-1} + s_t G^t$ $\tilde{W}^t \leftarrow \operatorname{argmin}_W \langle V^t, W \rangle + \frac{\beta_t}{2} \|W - W^0\|^2 + \alpha_t \psi(W)$ $W^t \leftarrow (1 - c(t))W^{t-1} + c(t)\tilde{W}^t$ **output:** The final model W^T

Algorithm Details

Starting with an initial point W^0 , at the t > 0 iteration,

- Draw an independent sample $\xi_t \sim D$ to compute the stochastic gradient $\nabla f_{\xi_t}(W^{t-1})$
- Deciding a learning rate η_t and the scaling factor $\beta_t\coloneqq \sqrt{t}$

•
$$V_t \coloneqq \sum_{k=1}^t \eta_k \beta_k \nabla f_{\xi_k}(W^{k-1}) = V_{t-1} + \eta_t \beta_t \nabla f_{\xi_t}(W^{t-1})$$

- $\tilde{W}^t \coloneqq \operatorname{prox}_{\frac{\alpha_t}{\beta_t}\psi} \left(W^0 \frac{V^t}{\beta_t} \right), \alpha_t \coloneqq \sum_{k=1}^t \beta_k \eta_k$: dual weighted averaging
- $\operatorname{prox}_g(x) \coloneqq \operatorname{argmin}_y \quad \frac{1}{2} \|x y\|^2 + g(y)$: proximal operator
- $W^t = (1 c_t) W^{t-1} + c_t \tilde{W}^t = W^{t-1} + c_t \left(\tilde{W}^t W^{t-1} \right)$: momentum
- Multi-stage learning rates; restart V_t and α_t (set to 0) whenever the learning rate changes

4 Experimental Results

Lemma 1

Consider Algorithm 1. Assume for any $\xi \sim D$, f_{ξ} is L-Lipschitz-continuously-differentiable almost surely for some L, and there is $C \ge 0$ such that $\mathbb{E}_{\xi_t \sim D} \|\nabla f_{\xi_t} (W^{t-1})\|^2 \le C$ for all t. If $\{\eta_t\}$ satisfies

$$\sum \beta_t \eta_t \alpha_t^{-1} = \infty, \quad \sum \left(\beta_t \eta_t \alpha_t^{-1} \right)^2 < \infty, \tag{1}$$
$$\left\| W^{t+1} - W^t \right\| \left(\beta_t \eta_t \alpha_t^{-1} \right)^{-1} \xrightarrow{a.s.} 0,$$

then $\alpha_t^{-1}V^t \longrightarrow \nabla f(W^{t-1})$ with probability one. Moreover, if $\{W^t\}$ lies in a bounded set, we get $\mathbb{E} \| \alpha_t^{-1}V^t - \nabla f(W^{t-1}) \|^2 \to 0$ even if the second condition in (1) is replaced by a weaker condition of $\beta_t \eta_t \alpha_t^{-1} \to 0$.

Theorem 2

Consider Algorithm 1 with the conditions in Lemma 1 hold, and $\{c_t\}$ satisfying $\sum c_t = \infty$. Assume the set of stationary points $\mathcal{Z} := \{W \mid 0 \in \partial F(W)\}$ is nonempty and $\beta_t \alpha_t^{-1} \to 0$. For any given W^0 , consider the event that $\{\tilde{W}^t\}$ converges to a point W^* (each event corresponds to a different W^*), then if $\partial \psi$ is outer semicontinuous at W^* , and this event has a nonzero probability, $W^* \in \mathcal{Z}$, or equivalently, W^* is a stationary point, with probability one conditional on this event.

Manifold Identification of RMDA

Theorem 3

Consider Algorithm 1 with the conditions in Theorem 2 satisfied. Consider the event of $\{\tilde{W}^t\}$ converging to a certain point W^* as in Theorem 2, if the probability of this event is nonzero; ψ is prox-regular and subdifferentially continuous at W^* and partly smooth at W^* relative to the active C^2 manifold \mathcal{M} ; $\partial \psi$ is outer semicontinuous at W^* ; and the nondegeneracy condition

 $-\nabla f\left(W^{*}\right)\in\mathsf{relint}\;\partial\psi\left(W^{*}\right)$

holds at $W^*,$ then conditional on this event, almost surely there is $T_0 \geq 0$ such that

$$\tilde{W}^t \in \mathcal{M}, \quad \forall t \ge T_0.$$

In other words, the active manifold at W^* is identified by the iterates of Algorithm 1 after a finite number of iterations almost surely.

LEE Ching-pei

- Overview and Motivation
- 2 Algorithm
- 3 Theoretical Properties

Setting

- Task: structured sparsity by using the group-LASSO norm
 - Each channel in convolutional layers as one group
 - All outputs from one neuron as one group $i^{++}\epsilon$
- We compare with the following state of the art methods for this task
 - RMDA: Our method
 - ProxSGD (Yang et al., 2019): A simple proxMSGD algorithm.
 - ProxSSI (Deleu and Bengio, 2021): This is a special case of the adaptive proximal SGD framework of Yun et al. (2021)
 - MSGD: SGD with momentum, this is a dense baseline

- Group sparsity pattern correctness and training error rates on synthetic data
- Generate a sparse model first and decide data labels using it
- Solid lines: sparsity pattern correctness
- dotted lines: prediction accuracy on training data

Logistic regression

Legend

Convolutional network

Structured Sparsity v.s. Epochs

LEE Ching-pei

Final Structured Sparsity and Validation Accuracy

Algorithm	Validation acc.	Group sparsity	Validation acc.	Group sparsity
	LeNet5/	MNIST	LeNet5/FashionMNIST	
Dense	$99.4 \pm 0.1\%$	-	$92.0 \pm 0.0\%$	-
ProxSGD	$99.1 \pm 0.0\%$	$76.6 \pm 2.3\%$	$91.0 \pm 0.2\%$	$50.5 \pm 2.7\%$
ProxSSI	$99.1\pm0.0\%$	$77.8\pm1.6\%$	$90.9 \pm 0.0\%$	$60.5 \pm 1.1\%$
RMDA	$99.1\pm0.1\%$	$79.8 \pm 1.6\%$	$91.4 \pm 0.1\%$	$66.2 \pm 1.7\%$
	VGG19/0	CIFAR10	VGG19/CIFAR100	
Dense	$94.0 \pm 0.1\%$	-	$74.6 \pm 0.2\%$	-
ProxSGD	$92.4 \pm 0.3\%$	$72.6 \pm 6.0\%$	$71.9 \pm 0.1\%$	$08.6 \pm 4.9\%$
ProxSSI	$92.5\pm0.0\%$	$81.1\pm0.2\%$	$66.2 \pm 0.4\%$	$46.4 \pm 1.4\%$
RMDA	$93.6 \pm 0.2\%$	86.4 ± 0.3%	$72.2 \pm 0.2\%$	$58.9 \pm 0.4\%$
	ResNet50	/CIFAR10	ResNet50/CIFAR100	
Dense	$95.7 \pm 0.0\%$	-	$79.1 \pm 0.2\%$	-
ProxSGD	$92.4 \pm 0.1\%$	$76.8 \pm 4.1\%$	$75.5 \pm 0.5\%$	$51.8 \pm 0.3\%$
ProxSSI	$94.1\pm0.1\%$	$74.8\pm1.3\%$	$74.5 \pm 0.3\%$	$32.8 \pm 2.5\%$
RMDA	$94.3\pm0.0\%$	$83.0\pm0.5\%$	$76.1 \pm 0.5\%$	57.7 ± 3.8%

- $\bullet~\ell_1$ norm for pruning/unstructured sparsity
- Compare RMDA with a state-of-the-art pruning method: RigL (Evci et al., 2020, ICML'20) by Google Brain/DeepMind
- $\bullet~1,000$ epochs for both RMDA and RigL

	ResNet50 v	vith CIFAR10	ResNet50	with CIFAR100
Algorithm	Sparsity	Accuracy	Sparsity	Accuracy
Dense baseline		94.81%		74.61%
RMDA	98.36%	93.78%	98.32%	74.32%
RigL	98.00%	93.41%	98.00%	70.88%

- Proposed an algorithm RMDA for training structured neural networks, utilizing variance reduction and manifold identification
- Experiments on structured and unstructured sparsity outperformed state of the art
- Code available at https://www.github.com/zihsyuan1214/rmda Full paper at https://openreview.net/pdf?id=mdUYT5QV00
- Future work: an adaptive version, and extend to other tasks