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@ Overview and Motivation



Structured Models

@ In many scenarios, it is desirable to train a machine learning model
with certain structures

@ Usually achieved by adding a regularizer ¥ to the
training/optimization objective function

e Examples (regularizer in the bracket):

- Prevent overfitting/Achieve low model complexity (¢2-norm
regularization)

- Satisfy certain constraints (indicator function of the feasible set)

- Achieve structured or unstructured sparsity (¢1-norm or group-LASSO
norm)
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Motivating Example: Structured Sparsity |

@ In many cases, many model parameters can be trimmed out without
affecting its generalization ability

@ Trimming out such parameters achieves sparsity and can reduce
computational burden for prediction

@ For neural networks, we want to trim out neurons (in fully-connected
layers) or a whole convolutional kernel, but not just individual
weights, to really reduce model size and accelerate prediction

@ But surely we still want to start from an overparameterized one
before starting training

@ GPUs are unable to do sparse matrix operations efficiently, mainly
because of the memory access pattern

- Dense computation: sequential access, cache miss minimized
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Motivating Example: Structured Sparsity |l

- Sparse computation: non-continuous access, high miss rate

@ Group-LASSO norm: parameters that should either exist together or
be removed together are bound together

@ Given A > 0 and a collection G of index sets {Z,} of the model
variable W, together with weights {w,}, this regularizer is defined

as

¢(W) = >‘ Zfil ngWIg
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Regularizers and Structures

@ Model-side analyses use (first-order necessary) optimality conditions
to show that at stationary points, certain structures will occur

@ But we don’t have such guarantees for approximate solutions

e Unfortunately, training/optimization algorithms can only provide
approximate solutions: they generate a sequence {WW*} of models
such that W' — W* for some W* that is a stationary
point/solution, and output W7 for some T" when the algorithm

terminates

@ What do we know about structures at W71?
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State of the Art in Deep Learning

@ State of the art for training structured neural networks: only have
convergence guarantees to stationary points, but no guarantee for
the structure of their output model even if a regularizer is
incorporated
- Stochastic subgradient methods (Wen et al., 2016, 2018): no

structure at all at the output; reported result requires a
post-processing step and another round of training

- Proximal stochastic gradient methods: (Yang et al., 2019; Bai et al.,
2019; Deleu and Bengio, 2021; Yun et al., 2021): identify artificial
structure from the proximal operator from the regularizer

@ The output structure can be very far away from that at W* due to the
variance of the stochastic gradients

o Known to output unstable and highly suboptimal structure even in the
convex setting (Sun et al., 2019; Poon et al., 2018)
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Manifold Identification |

@ For regularizer that are partly smooth at a point W*, the structure
at W* can be represented as a low-dimensional manifold

@ A function is partly smooth at W* if it is smooth around W* when
restricted to a certain smooth manifold M, and its value changes
drastically along directions leaving M

Iy 05 1

Figure: Example:{;-norm with the associated manifold (the valley) for the
red dot W*
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Manifold Identification Il

@ Most regularizers popular in machine learning are partly smooth: /;
norm, group-LASSO norm, nuclear norm, etc

@ The structure at the solution W* can be identified if for {IW'}
converging to W*, W' is in M for all ¢ large enough

@ Called manifold identification in nonlinear optimization: our goal!
(locally optimal structure for sequences converging to W*)

@ Deterministic first-order methods like proximal-gradient-type
methods are known to achieve so
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Variance Reduction

@ For stochastic methods to achieve manifold idenification, variance
reduction is needed (Poon et al., 2018)

- The missing element in existing methods for training structured NNs

@ But variance reduction that utilizes the finite-sum structure of ERM
does not work for deep learning (Defazio and Bottou, 2019) because
of data augmentation

@ Need an algorithm achieving variance reduction in the infinite-sum
setting, while
- being practically feasible: not more expensive than SGD + momentum

- Incorporate momentum for good prediction performance
@ Our proposal: regularized modernized dual averaging (RMDA),
inspired by RDA (Xiao, 2010) and MDA (Jelassi and Defazio, 2020)
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Our Contributions

@ Variance reduction beyond finite-sum with low cost
@ Guaranteed optimal structure identification in finite steps

@ Superior empirical performance over state of the art for both
structured sparsity and pruning
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© Algorithm



Problem Formulation

Consider the following regularized optimization problem:

min F(W) :=Eeup [fe (W) +9 (W) (Regularized Loss)

e & is a Euclidean space with its inner product (-, -) and the
associated norm ||-||

@ D is a distribution over a space (2
o f¢ is differentiable almost everywhere for all £ € 2

e (W) is a regularizer that might be nondifferentiable
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Algorithmic Framework

Algorithm 1: RMDA (W°, T, 5(-), ¢(-))

input : Initial point W°, learning rate schedule n(-), momentum
schedule function ¢(-), number of epochs T

Vo0, ag<+ 0

fort=1,...,7 do

By Vt, s+ n(t)Be, o — o1+ s

Sample & ~ D and compute G' « V f, (W)

Vi Vil 4 5,GY

Wt < argming, (VE, W) + Z[W — WO|* + ap(W)

Wt (1 — ()W + c(t)W!

output: The final model W7
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Algorithm Details

Starting with an initial point W9, at the ¢t > 0 iteration,

@ Draw an independent sample & ~ D to compute the stochastic
gradient V fe, (W)

o Deciding a learning rate 7, and the scaling factor 3, := v/t
o V=0 bV e, WH 1) = Vi + BV fe, (W)
o W= proXa,, (WO — ‘ﬂ/—:) L = >t Bene: dual weighted
averaging
. 1 2 .
® prox,(r) = argmin, ||z —y||” + g(y): proximal operator
o Wh=(1—c) Wil =Wttte (W —Wi):
momentum

@ Multi-stage learning rates; restart V; and «; (set to 0) whenever the
learning rate changes
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© Theoretical Properties



Consider Algorithm 1. Assume for any £ ~ D, f¢ is
L-Lipschitz-continuously-differentiable almost surely for some L, and
there is C > 0 such that Ee, .p||V fe, (W 1)|* < C for all t. If {n,}

satisfies

> Bimay =00, 3. (5t77tat_1)2 < 00, (1)
HWt+1 - W ‘ (@ﬂ]tat_l)_l — 0

then a; 'Vt — V f(W'1) with probability one. Moreover, if {W*}
lies in a bounded set, we get IEHat_lvt - Vf (Wt_l)H2 — 0 even if
the second condition in (1) is replaced by a weaker condition of
Bemai b = 0.
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Convergence to Stationary Points

Theorem 2

Consider Algorithm 1 with the conditions in Lemma 1 hold, and {c;}
satisfying > ¢; = oo. Assume the set of stationary points

Z:={W |0€dF(W)} is nonempty and Bia; ' — 0. For any given
WP, consider the event that {W'} converges to a point W* (each
event corresponds to a different W*), then if Ov is outer
semicontinuous at W*, and this event has a nonzero probability,

W* e Z, or equivalently, W* is a stationary point, with probability
one conditional on this event.
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Manifold Identification of RMDA

Theorem 3

Consider Algorithm 1 with the conditions in Theorem 2 satisfied.
Consider the event of {Wt} converging to a certain point W* as in
Theorem 2, if the probability of this event is nonzero; 1) is prox-regular
and subdifferentially continuous at W* and partly smooth at W*
relative to the active C*> manifold M Ov) is outer semicontinuous at
W= and the nondegeneracy condition

—Vf (W) € relint 9y (W)

holds at W*, then conditional on this event, almost surely there is
Ty > 0 such that }
Wte M, Vt>T,.

In other words, the active manifold at W* is identified by the iterates
of Algorithm 1 after a finite number of iterations almost surely.
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@ Experimental Results



@ Task: structured sparsity by using the group-LASSO norm
- Each channel in convolutional layers as one group

- All outputs from one neuron as one group
i+t

@ We compare with the following state of the art methods for this
task

- RMDA: Our method
- ProxSGD (Yang et al., 2019): A simple proxMSGD algorithm.

- ProxSSI (Deleu and Bengio, 2021): This is a special case of the
adaptive proximal SGD framework of Yun et al. (2021)

- MSGD: SGD with momentum, this is a dense baseline
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Stability and Correctness

@ Group sparsity pattern correctness and training error rates on
synthetic data

@ Generate a sparse model first and decide data labels using it
@ Solid lines: sparsity pattern correctness

@ dotted lines: prediction accuracy on training data
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Structured Sparsity v.s. Epochs
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Final Structured Sparsity and Validation Accuracy

Algorithm  Validation acc.

Group sparsity Malidation acc.

Group sparsity

LeNet5/MNIST

LeNet5/FashionMNIST

Dense 09.4 £ 0.1% - 92.0 £ 0.0% -
ProxSGD 90.1 + 0.0% 76.6 £23% | 91.0 £ 0.2% 505+ 2.7%
ProxSSI 99.1 + 0.0 % 77.8 £1.6% | 90.9 &+ 0.0% 605 + 1.1%
RMDA 09.1 + 0.1% 798 +£1.6% | 91.4 4+ 0.1% 66.2 + 1.7%
VGG19/C|FAR10 VGG19/CIFAR100
Dense 04.0 £ 0.1 - 74.6 £ 0.2% -
ProxSGD 02.4 £+ 0. 3° 726 £6.0% | 71.9 £ 0.19 08.6 £ 4.9%
ProxSSI 925+ 0.0 % 81.1 £ 02% | 66.2 + 0.4% 46.4 4+ 1.4%
RMDA 03.6 + 0.2% 86.4 £ 0.3% | 72.2 4+ 0.2% 58.9 4+ 0.4%
ResNet50/CIFAR10 ResNet50/CIFAR100
Dense 957i00° - 79.1 £ 0.2%
ProxSGD 924 + 0.1 76.8 £ 4.1% | 755 + 0.5% 51.8 :l: 0.3%
ProxSSI 941+ 0.1 % 748 £13% | 745 £+ 0. 3% 32.8 + 2. 5%
RMDA 94.3 + 0.0% 83.0 £ 05% | 76.1 £ 0.5% 57.7 + 3.8%
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Comparison with Pruning

@ (1 norm for pruning/unstructured sparsity

e Compare RMDA with a state-of-the-art pruning method: RiglL (Evci
et al., 2020, ICML'20) by Google Brain/DeepMind

@ 1,000 epochs for both RMDA and RiglL

ResNet50 with CIFAR10 | ResNet50 with CIFAR100

Algorithm Sparsity Accuracy | Sparsity Accuracy
Dense baseline 94.81% 74.61%
RMDA 98.36% 93.78% | 98.32% 74.32%
RigL 98.00% 93.41% | 98.00% 70.88%
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Conclusions

@ Proposed an algorithm RMDA for training structured neural
networks, utilizing variance reduction and manifold identification

@ Experiments on structured and unstructured sparsity outperformed
state of the art

@ Code available at https://www.github.com/zihsyuan1214/rmda
Full paper at https://openreview.net/pdf?id=mdUYT5QVO00

@ Future work: an adaptive version, and extend to other tasks
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https://www.github.com/zihsyuan1214/rmda
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